Assessment of soil erosion risk severity using GIS, remote sensing and RUSLE model in Oued Laou Basin (north Morocco)

Omayma Amellah*1, Karim el Morabiti1

1 Department of Geology, Faculty of Sciences, Abdelmalek Essaâdi University, Tetouan, Morocco

* Omayma Amellah, amellahoumaima@gmail.com, ORCID iD: https://orcid.org/0000-0002-1177-2466

Abstract

Soil loss by lateral flow is a critical bother in the Oued Laou basin due to the steepness of its landscape relief and the considerable deference altitudinal between the upstream and downstream area. Those predispositions highly increase soil vulnerability to the risk of erosion indeed; tones of sediment are transported each year, causing significant damages regarding structures and waterworks such as siltation. For this reason, this work focus on the merging of remote sensing techniques, GIS, and the Revised Universal Soil Loss (RUSLE) Equation to quantitatively evaluate soil erosion severity as well as highlight the most erosion-prone areas in the Oued Laou basin, Northwestern Morocco. Accordingly, the study site area was arranged into six soil erosion risk categories: very slight (25.3%), slight (12.4%), moderate (40.5%), intense (12.2%), very intense, (5%) and severe (4.6%). Moderate to severe soil loss rates that are correlated to abrupt slopes defined most of the basin area. In addition to the spatial distribution of soil severity classes over the study area, the average annual soil erosion rate was estimated to be 31.5 t ha⁻¹ year⁻¹ in the Oued Laou watershed. The latter amount was compared to many previous studies that have been carried out in the surrounding basins based on RUSLE or other techniques to validate the model accuracy.

Keywords

Erosion prone area
Erosion model
RUSLE
Remote sensing
GIS
Rif region

1. Introduction

Soil erosion by water is a worldwide phenomenon that causes land degradation (Vaezi et al., 2011; Ganasri and Ramesh, 2015; Ostovari et al., 2017) by exacerbating nutrient loss (Pal and Chakrabortty, 2019). It not merely leads to land degradation and loss of soil nutrients but also intensifies the recurrence of floods, droughts, landslides, and other hazards (Munodawafa, 2007; Park et al., 2011; Arnhold et al., 2014; Rickson, 2014; Zeng et al., 2017). It is a natural process, and its severity and extent depend on diverse environmental parameters, including climate, topography, soil, land cover, rainfall, and interactions between them (Mutua et al., 2006; Butt et al., 2010; Thomas et al., 2017; Kayet et al., 2018). In most cases, however, this process is strongly intensified by human activities (deforestation, agricultural practices), which is referred to human-induced or accelerated erosion (Dotterweich et al., 2013; Świtoniak, 2014; Van Oost et al., 2003).

Soil loss by surface flow is a serious issue in the Oued Laou watershed, typically in the upstream part with consequential effects on the downstream flooding, crop production, and waterworks structures. Many factors and practices aggravate the severity and intensifying the process of erosion, especially in the middle and south areas. Steep topography, grazing, poor agricultural management, forest fire, planned burning, some irrational human activities may also trigger land cover degradation and pronouncing the amount of soil loss. Runoff or water erosion risks become more important during rainy seasons, which readily alter, detach, and convey the soil, as well as contribute to the sedimentation trouble in the downstream waterworks, such as bridges and reservoir siltation.

Soil erosion risk estimation has been a concern to scientists since the 1930s (Renard et al 1994; Dutta et al., 2015) to predict and recognize control erosion practices. Quantitative methods are the most required for assessing how swiftly soil abrades from its initial location (Park et al., 2011). Different techniques have been implemented to assess soil loss by water at diverse levels such as global, regional, and local (Terranova et al., 2009; Jaradiñas et al., 2020). Several models have also been developed to quantify the soil loss rate (Poesen et al., 2003; Gayen et al., 2019). These models are classified into empirical, semi empirical, and physical-process-based models (Pan and Wen, 2014). The most widely used is the Universal Soil Loss Equation (USLE), which was created in 1978 by the United States Department of Agriculture (USDA) to predict the quantity of the eroded material durably (Abdo and Salloum, 2017). It is an empirical algorithm evaluating long-term means of sheet and rill erosion, using plot data gathered in the eastern USA (Wischmeier and Smith, 1965).
A recent version of USLE was presented by (Renard et al., 1997), which is known as The Revised Universal Soil Loss Equation (RUSLE). It has been utilized widely to assess soil loss amount at a sustainable basis from hillslopes in vast extent investigations (Panagos et al., 2015; Teng et al., 2016; Teng et al., 2018). In the last years, many scientists all over the world subserved RUSLE. Some of them aligned to the catchment to estimate the amount of soil loss related to cultivating practices (Prasannakumar et al., 2012; Dissanayake et al., 2018; Tessema et al., 2020).

RUSLE provides the possibility to quantify soil erosion rate at the plot extent, besides it simulates the spatial distribution of soil loss over a field (Renard et al., 1997; Youe-Qing et al., 2008). The use of geospatial technique and RUSLE model is an advantageous combination, and a widely used method owing to its simpleness and applicability over large-scale areas with better reliability and cost-effectiveness (Millward and Mersey, 1999; Wang et al., 2003; Angima et al., 2003; Du et al., 2004; Krishna Bahadur, 2009; Zhang et al., 2010; Demirci and Karaburun, 2012; Pradeep et al., 2015). The present research aims to applicate the RUSLE model combined with remote sensing and GIS techniques in order to estimate the amount of soil erosion rates at the Oued Laou catchment of North Morocco.

2. Materials and methods

2.1. Study site

The Oued Laou study site is a coastal watershed situated at the NW part of Morocco, at 45 km of Tetouan city, on the provincial borders of Tetouan and Chefchaouen (Amellah et al., 2020) (Fig. 1 and Fig. 2). Covering an area around 928 km², the south part of the site under study is mostly mountainous, marked by abrupt slopes and steep reliefs: the northern part is mainly flat at the central area and gently hilly at the borders, the altitude range between 0 and 2122 m above sea level. The climate is subhumid Mediterranean with 700 mm annual average rainfall with humid, relatively cold winter and dry, warm summer. The majority of precipitation occurs between November and March. The annual average temperature is 18.6°C.

2.2. Data requirement

The set of data requirements necessary for implementing the RUSLE model were provided by a diversity of sources, including the following: (i) the average annual rainfall data from 1969 to 2018 collected from the Loukkos Hydraulic Basin Agency (LHBA), including five hydrometric stations in the study area. (ii) The soil database was provided by the Provincial Directorate of Water, Forests, and the Fight Against Desertification (PDWF-FAD), including soil map, soil characteristics, and measurements. (iii) Digital Elevation Model (DEM) with a resolution 5m cell size generated using GIS tools from digitized contours of the official 1/25000 topographic maps. (vi) Landsat 8 remotely sensed images (August 2016).

2.3. RUSLE

The RUSLE model is an empirical equation that quantifies the average annual soil erosion in t ha⁻¹ year⁻¹. Indeed, estimates the mean annual soil erosion (A) per unit area, rainfall erosivity (R), soil erodibility (K), slope length and slope steepness (LS),
land cover-management (C), and support practice (P). These factors were spatially executed based on GIS algorithms and remote sensing processes from the data collected previously. For the objective of generating raster data sets of each factor, two software were necessarily required (Arc GIS 10.2 and ENVI platforms). Then the five factor layers were multiplied each other following the RUSLE equation to quantify the average annual soil loss of the watershed and produce the soil severity classes (Fig. 3) as follows:

$$A = R \cdot K \cdot L \cdot S \cdot C \cdot P$$

Where A (t ha$^{-1}$ year$^{-1}$): the average annual soil loss per unit area, R (MJ mm ha$^{-1}$ h$^{-1}$ year$^{-1}$): rainfall/runoff erosivity factor, K (t h MJ$^{-1}$ mm$^{-1}$): soil erodibility factor signifies the soil loss rate of specific soil rainfall erosivity per unit measured in a standard plot, L slope length factor, S slope steepness factor, C crop management factor, and P support practices factor.

Fig. 2. Examples of the repercussion caused by water erosion processes at Oued Laou Basin: the eroded sediment carried by the flow precipitates downstream of the basin, causing the siltation of the bridge while modifying the course of the flow, the overflow of the bridge by water and sediment, and sometimes the interruption of the road circulation.
2.4. RUSLE parameter estimation

2.4.1. Rainfall erosivity Factor \((R) \)

Rainfall erosivity \((R)\) is an indicator of the potential of rainfall intensity to induce soil loss by detaching and transporting soil particles. Its computation requires continuous and detailed rainfall observations (Ganasri and Ramesh, 2016). The \(R \)-factor is a complex process that highly depends on the amount, energy, duration, intensity, size of raindrops, the pattern of precipitation, and the resulting runoff rate (Farhan and Nawaiseh, 2015). This erosivity factor is likely to be the most controlling for soil loss in many research studies (Wischmeier and Smith, 1978). Rainfall erodibility can be obtained from the intensity of the precipitation for the particular period of the area under consideration (Renard et al., 1997; Kouli et al., 2009). However, estimating the \(R \)-factor is commonly challenging in most regions in the world due to the scarcity of high-resolution rainfall data (Thomas et al., 2018). Regarding this work, the rainfall erosivity factor for this basin was produced from the average annual rainfall (mm) data observations at the level of five stations during the period between 1969 and 2018. Only two stations are inside the study area, Koudiat Kourriren and Bab Taza, the Ben Karrich, Torreta, and Amzal stations are outside surrounding the basin (Table 1).

2.4.2. Soil erodibility factor \((K)\)

Soil erodibility \((K)\) indicates the inherent susceptibility of the soil to be eroded. This mechanism depends on the mineralogical, morphological, physical, and chemical attributes of the soils. The \(K \)-factor signifies the quantity of soil loss per unit of rainfall erosive energy, referring to a plot of the clean bare soil of 22 m long and 9% slope (Brady and Weil, 2012; Biswas and Pani, 2015). Regarding the physical characteristics, some soils are more susceptible to erosion than others (Miheretu and Yimer, 2018; Radziuk and Świtoniak, 2021). The chemical characteristics are also playing an important role in materials eroding. The most characteristics affecting \(K \) are soil structure, organic content, texture, and permeability of the soil profile (Kouli et al., 2008; Balasubramani et al., 2015; Pal and Chakraborty, 2019). The soil erodibility factor is calculated based on the soil type details. In-situ data measurements of the soil, and assigning the K-factor values is time-consuming, expensive, and requires specific equipment. Thus, the soil units map of the basin was extracted from the digital soil map (2000) that has been implemented based on the soil survey of (2000) made by the National Institute of Agricultural Research (NIAR) (Table 2). Consequently, the type of dataset available in the area understudy determines the selected approach (Yesuph and Dagnew, 2019). \(K \) factor was estimated based on the soil composition amount of silts, clay, sand, and organic matter in each soil unit, and then the values of the \(K \) factor transformed into raster layer using GIS tools.

2.4.3. Topographic factor \((LS)\)

The topographic factor \((LS)\) is the sensitive element of RUSLE for estimating soil erosion (Renard et al., 1997). It expresses the compound influence of slope gradient \((S)\) and slope length \((L)\), which powerfully affects the soil particles’ transportation. Besides, it identifies the ratio of soil erosion per surface unit on a field to the relative loss from a 22.13 m long plot with a 9% slope gradient under similar circumstances. The \(LS \) parameter augments slope gradient and slope length (Fig. 4). \(LS \) factor indicates the gradient responsible for the velocity of the flow. The steeper the land slope, the higher the velocity and erosive potential of runoff (Wischmeier and Smith, 1978; Renard et al., 1997; Yesuph and Dagnew, 2019). Plenty of approaches are available to \(LS \) factor calculation in the literature. In order to produce \(LS \) factor for this work, through the GIS raster calculator related to map algebra toolbox, the equation developed by (Moore and Wilson, 1992) was chosen and applied as follows:

<table>
<thead>
<tr>
<th>Meteorological station</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>average annual rainfall (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koudiat Kourriren</td>
<td>520</td>
<td>528.9</td>
<td>30</td>
<td>633</td>
</tr>
<tr>
<td>Bab Taza</td>
<td>518.6</td>
<td>495.2</td>
<td>350</td>
<td>750</td>
</tr>
<tr>
<td>Ben Karrich</td>
<td>495.7</td>
<td>545.6</td>
<td>20</td>
<td>656</td>
</tr>
<tr>
<td>Torreta</td>
<td>502.4</td>
<td>550.8</td>
<td>8</td>
<td>635.6</td>
</tr>
<tr>
<td>Amzal</td>
<td>492.9</td>
<td>545.9</td>
<td>20</td>
<td>652.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Area (km²)</th>
<th>Area (%)</th>
<th>Estimated K value (t ha⁻¹ MJ⁻¹ mm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slightly evolved Fersiallitic soils and Raw minerals</td>
<td>116.30</td>
<td>12.52</td>
<td>0.15</td>
</tr>
<tr>
<td>Burnished and Raw mineral soils</td>
<td>54.70</td>
<td>5.80</td>
<td>0.21</td>
</tr>
<tr>
<td>Fersiallitic and Slightly evolved soils</td>
<td>40.02</td>
<td>4.31</td>
<td>0.3</td>
</tr>
<tr>
<td>Raw mineral and Slightly evolved soils</td>
<td>125.99</td>
<td>13.56</td>
<td>0.35</td>
</tr>
<tr>
<td>Burnished and Slightly evolved soils</td>
<td>165.04</td>
<td>17.76</td>
<td>0.4</td>
</tr>
<tr>
<td>Slightly evolved soils</td>
<td>157.29</td>
<td>16.93</td>
<td>0.3</td>
</tr>
<tr>
<td>Calcimagnesic, Fersiallitic and Raw mineral soils</td>
<td>277.93</td>
<td>29.91</td>
<td>0.46</td>
</tr>
</tbody>
</table>
2.4.4. Crop management factor (C)

The C factor determines the influence of management practices and cropping on soil loss rates. It analyses the effects of management potentials and conservation plans (Jobin et al., 2018). This identifies the amount of soil loss related to cropland under typical parameters to the relative loss of a clean-tilled, continuous fallow (Wischmeier and Smith, 1978). Recently, satellite images have been widely utilized to calculate the C factor. This work as well made use of remotely sensed images to calculate the C factor based on the vegetation index (NDVI) (Fig. 5) following the (Van Der Knijff, 2000):

$$C = \exp \left[-\frac{\alpha \times \text{NDVI}}{\beta - \text{NDVI}} \right]$$

Where

α & β are the variables controlling the NDVI-C curve, with $\alpha = 2$; $\beta = 1$.
2.4.5. Conservation support practice factor (P)

Soil and water conservation factor P is the percentage of soil loss with specific support practices to the depletion loss of up and downslope tillage (Pal and Chakraborty, 2019; Pandey et al., 2007; Wischmeier and Smith, 1978; Renard et al., 1997). The lower the P factor value, the more efficient the conservation practice is in reducing soil loss. The supporting practice factor (P) was calculated referring to the method of cultivation. It is computed as the relationship between terracing and slope in paddy land and is calculated based on the relationship between contour and slope in cultivated fields (Pan and Wen, 2014). The values obtained are between 0 and 1. The 0 value signifies that the field is not susceptible to soil loss, while the value 1 means that the site is not subject to either soil or water conservation measures.

3. Results and discussion

The assessment of soil loss risk levels at catchment extent is crucial for durable land use management. The five erosion-controlling raster’s, R, K, LS, C, and P factors, were combined to estimate and assess annual soil loss erosion based on the raster calculator tool of the GIS interface. Annual average rainfall data were used to compute rainfall erosivity (R-factor). The latter varied within the range from 347 to 413 MJ mm h⁻¹ h⁻¹. The highest values of the erodibility factor (K) values in the watershed area were distributed in the middle of the Nakhla basin of 39.6 t ha⁻¹ year⁻¹ using the 137Cs method. The soil loss estimation has been carried out in many watersheds of the Rif. According to many research studies that have been carried out using RUSLE model, for instance, in the Oued Sahla watershed, (Central Rif) an average of 22 t ha⁻¹ year⁻¹ was estimated by (Ait Brahim et al., 2003) in the Nakhla watershed. In the Khmiss wadi watershed (Khalia Issa et al., 2014) found an average of 37 t ha⁻¹ year⁻¹. Also in the watershed of Tleta and that of Oued Sa-nia (Dahman, 1994; Tahiri et al., 2014) found an average loss of 37 t ha⁻¹ year⁻¹. Many scientists applied many techniques to estimate the soil loss rates over different areas of the Rif. Including the work of (Moukhchane et al., 1998) that quantifies the erosion rate in the Rif area. An average of 38.7 t ha⁻¹ year⁻¹ was estimated by (Ait Brahim et al., 2003) in the Nakhla watershed. In the Khmiss wadi watershed (Khalia Issa et al., 2014) found an average of 37 t ha⁻¹ year⁻¹. Also in the watershed of Tleta and that of Oued Sa-nia (Dahman, 1994; Tahiri et al., 2014) found an average loss of around 32.5 t ha⁻¹ year⁻¹ and 47.18 t ha⁻¹ year⁻¹ respectively.

The LS-factor values range between 0–20 as the slope and flow accumulation increase. The lowest LS values are located in the down slope lands, reflecting the slope effect on the LS outcomes. Its spatial distribution is shown in the LS factor of (Fig. 6b), illustrating that the lowest LS values located along the valley of Oued Laou (LS<10 topographically, this part of the study area is not susceptible to water erosion). The highest LS values are located in the complex Dorsale landforms of the watershed with steep relief, especially in the middle and south. The erodibility factor (K) values in the watershed area swing from 0.1 to 0.46 proving the susceptibility of soils (low to medium) and their vulnerability to erosion. Indeed, the spatial distribution of the K-factor seen in (Fig. 6c) shows that only 29% of the watershed shows a low erodibility, represented by the class of fersiatic, little evolved, and raw mineral soils with K varying from 0.1 to 0.2. (30%) the site shows a strong erodibility with a high level of K ranging between 0.3 and 0.46. The highest values of the K-factor are distributed in the middle of the study area where soils are thin and slopes are steep.

The C-factor calculated based on equation (3) varies from 0.37 to 0.68. The spatial distribution of the C-factor is illustrated in (Fig. 6d) showing that the remotely sensed datasets (NDVI) make it possible to predict C-factor with high performance. It highlights that most high relief areas over the basin covered with vegetation, which also shows significant protection and helps minimize soil erosion.

P-factor (Fig. 6e): nearly all P values tend towards 1 over the entire watershed area, except for the downstream river where cultivated areas are limited. The absence of soil conservation practices can interpret this value.

The factors of the RUSLE model in the area under study were represented through raster layers in the GIS platform. Those layers were multiplied together following the equation to calculate the average soil erosion by mean of the raster calculator tool of the GIS software. The outcome layer of this process was then classified into six soil loss categories: very slight, slight, moderate, intense, very intense, and severe. In the final soil erosion map of the watershed (Fig. 7), soil erosion rate below 10 ton ha⁻¹ MJ⁻¹ was defined as very slight erosion, while those >30 t ha⁻¹ year⁻¹ were defined as severe. Values between very slight and severe erosion were classified further as slight, moderate, intense and very intense erosion areas (Table 3).

The soil loss estimation has been carried out in many watersheds of the Rif. Comparing the results of this work with the results obtained by the other authors allows relatively to validate the outcomes of this approach. For instance, (Moukhchane et al., 1998) estimated an average soil loss of 17 t ha⁻¹ year⁻¹ in the Rif area. An average of 38.7 t ha⁻¹ year⁻¹ was estimated by (Ait Brahim et al., 2003) in the Nakhla watershed. In the Khmiss wadi watershed (Khalia Issa et al., 2014) found an average of 37 t ha⁻¹ year⁻¹. Also in the watershed of Tleta and that of Oued Sa-nia (Dahman, 1994; Tahiri et al., 2014) found an average loss of around 32.5 t ha⁻¹ year⁻¹ and 47.18 t ha⁻¹ year⁻¹ respectively.

Many scientists applied many techniques to estimate the soil loss rates over different areas of the Rif. Including the work of (Moukhchane et al., 1998) that quantifies the erosion rate in the Rif area. An average of 39.6 t ha⁻¹ year⁻¹ using the 137Cs method. (Merzouki, 1992) estimated an average of 47.2 t ha⁻¹ year⁻¹ using the bathymetry method in the Telata basin. Based on remotely sensed analyses (Bonn, 1998) has estimated 39 t ha⁻¹ year⁻¹ of soil loss for the Tleta basin. Using the same technique (Dammati et al., 2006) found an average of 26.6 t ha⁻¹ year⁻¹ for Raouz basin. (Zouagui and Bennmansour, 2012) have found an average of 23 t ha⁻¹ year⁻¹ in the Moulay Boucha basin.

According to many research studies that have been carried out using RUSLE model, for instance, in the Oued Sahla watershed, (Central Rif) an average of 22 t ha⁻¹ year⁻¹ was estimated by (Sadiki et al., 2009). 55 t ha⁻¹ year⁻¹ was found at the Oued Boussouab catchment by (sadiki et al., 2004) (Eastern Rif) and an average annual rate of 25.77 t ha⁻¹ year⁻¹, in Araba Ayacha watershed was calculated by (Ouallali et al., 2017). The application of RUSLE or other methods to estimate soil loss in the Rif watersheds ranges from 17 t ha⁻¹ year⁻¹ to 55 t ha⁻¹ year⁻¹. Most are between 20 t ha⁻¹ year⁻¹ and 40 t ha⁻¹ year⁻¹. The 31.5 t ha⁻¹ year⁻¹ obtained in this work falls within this range, which relatively validates the results of this technique.
Fig. 6. Spatial distribution of RUSEL factors: (a) map of rainfall erosivity R-factor, (b) map of slope length and steepness LS-factor, (c) map of soil erodibility K-factor, (d) crop management C-factor, (e) map of support practice P-factor
Table 3
Soil loss severity classes with hazard levels and their corresponding area (in % and ha) and annual soil loss (in t ha⁻¹ year⁻¹)

<table>
<thead>
<tr>
<th>Soil loss severity (t ha⁻¹ year⁻¹)</th>
<th>Severity classes</th>
<th>Area (km²)</th>
<th>Area (ha)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–0.1</td>
<td>Very slight</td>
<td>23447.7</td>
<td>23447.7</td>
<td>25.3</td>
</tr>
<tr>
<td>0.1–1</td>
<td>Slight</td>
<td>11478.15</td>
<td>11478.15</td>
<td>12.4</td>
</tr>
<tr>
<td>1–10</td>
<td>Moderate</td>
<td>37539.63</td>
<td>37539.63</td>
<td>40.5</td>
</tr>
<tr>
<td>10–20</td>
<td>Intense</td>
<td>11225.61</td>
<td>11225.61</td>
<td>12.2</td>
</tr>
<tr>
<td>20–30</td>
<td>Very intense</td>
<td>4417.38</td>
<td>4417.38</td>
<td>5</td>
</tr>
<tr>
<td>30–50<</td>
<td>Severe</td>
<td>4228.83</td>
<td>4228.83</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Fig. 7. Spatial distribution of Soil erosion potential (A) calculated using the RUSLE method. (a) Soil loss in t ha⁻¹ year⁻¹, (b) soil severity classes
4. Conclusions

This work illustrates the implementation of an empirical soil erosion model called RUSLE combined with the Geographic Information System in order to quantify soil loss potential areas at the level of the Oued Laou catchment. The reason behind opting for this soil erosion model is that relatively simple, easy to interpret physically, requires fewer datasets, and can be developed using readily available inputs for areas specifically at high erosion risk. Quantitative estimation of soil losses, obtained from the combined GIS and the RUSLE empirical model, classified basin area into six soil erosion risk levels: very slight (25.3%), slight (12.4%), moderate (40.5%), intense (12.2%), very intense (5%) and severe (4.6%). With: (i) 62% of the watershed area is prone to high risk of water erosion with annual average losses of 5% and severe (4.6%). With: (ii) 62% of the watershed area is prone to high risk of water erosion with annual average losses of 31.5 t ha\(^{-1}\) year\(^{-1}\). (iii) Maximum losses are found in the middle of the watershed coincide with abrupt slopes and consequently, high erosion risk estimated by the RUSLE erosion model in this basin area. This case study can only be a starting point for further work in this direction given the need and its importance in supporting land use planning, decision-making, and implementing erosion control practices in the area.

Acknowledgements

The authors gratefully acknowledge the ERASMUS+ and the Civil Engineering Faculty (Mühendislik Fakültesi) of Cumhuriyet University for the help regarding image treatment Pr. Önder Gürsoy and Rutkay Atun.

References

