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1. Introduction

Application of digital soil mapping (DSM) and prediction 
models for diverse soil characteristics, like soil organic carbon, 
macronutrient, or moisture content of soils, are widely popular 
and useful tools for supporting agricultural production (Ma et 
al., 2019; Owens et al., 2020). Nowadays, thanks to the develop-
ment of technology and remote sensing, continuous modeling 
of the soil surface is possible due to the availability of ancillary 
information, which was the main limitation in conventional 
soil survey. Therefore, in DSM, this auxiliary information rep-
resenting the main soil forming factors, along with soil obser-
vations, can predict the spatial distribution of soil properties by 
capturing the relation between these variables using machine 
learning methods (McBratney et al., 2003). The main concept 
behind DSM is based on the soil development theory proposed 
by Jenny (1994), which outlines the five key soil forming fac-

tors known as clorpt (climate, organisms, relief or topography, 
parent material, and time). This theory was later refined to the 
scorpan framework (McBratney et al., 2003), where “s” repre-
sents the soil properties of interest and “n” refers to the spatial 
position. The updated framework describes the quantifiable 
relationship between soil properties and environmental fac-
tors at a specific location in space, providing a spatial model 
for DSM. In this way, even with limited number of soil obser-
vations, it is feasible to map the entire area in which remote 
sensing data exists, and the soil variation can be effectively 
captured by the relation between them (Mora-Vallejo et al., 
2008). The development of DSM techniques has expanded in 
recent years, resulting in the availability of digital soil maps 
for both qualitative and quantitative soil attributes (Behrens et 
al., 2005; Dai et al., 2014), from detailed regional maps (Hatef-
fard et al., 2022) to global soil maps (Poggio et al., 2021). Ma-
chine learning algorithms (MLAs)  are frequently used for DSM 
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and have demonstrated many advantages, such as the ability 
to handle a variety of variables and the flexibility to model the 
relationship between dependent and independent variables 
(Hengl et al., 2015; Chen et al., 2019). However, it is important 
to use caution when applying MLAs, as it may be vulnerable 
to over-fitting and lack transparency (Arrouays et al., 2020). 
The accuracy of predictive models in DSM is crucial as it influ-
ences the quality of the predictions, which are used to support 
policy-making decisions. The selection of the right approach 
and the identification of the most accurate predictive model, 
however, is challenging due to the many factors involved in the 
modeling process. This makes it difficult to find the appropri-
ate approach and the most accurate model for a given dataset 
(Wadoux, 2020).

There are various MLAs that can be used for regression 
or classification tasks in DSM, including decision trees (DT) 
(Hateffard et al., 2019), random forest (RF) (Hengl et al., 2015; 
Hounkpatin et al., 2018), artificial neural networks (ANN) (Dai 
et al., 2014), and support vector machines (SVM) (Kovačević et 
al., 2010). Different studies have compared the accuracy of these 
models in prediction of soil properties  (e.g. Zhao and Shi, 2010; 
Hengl et al., 2018). Zeraatpisheh et al. (2019) compared different 
methods including Cubist, RF, DT and multiple linear regression 
(MLR) to estimate the spatial distribution of soil organic carbon, 
clay content and calcium carbonate equivalent in a semi-arid re-
gion in Iran. The best models were found to be Cubist and RF for 
predicting soil properties in this area. 

In their study, Zhao and Shi (2010) evaluated various tech-
niques, including MLR, DT, ANN with kriging and universal 
kriging, for predicting the spatial distribution of organic car-
bon in soil. The results showed that decision trees had the best 
performance, delivering 67% of the total variation. Heung et al. 
(2016) used ten different MLAs and 20 environmental covari-
ates in a DSM approach to predict soil great groups and orders. 
The models, such as regression trees and RF, were preferred for 
their speed and interpretable results, while the k-nearest neigh-
bor and SVM showed the highest accuracy at 72%. The authors 
also pointed out that the choice of model and sampling design 
can greatly affect the outcomes.

Since these techniques are standardized and applied inde-
pendently from landscape types, they have to function evenly 
reliable under diverse geographical conditions showing up 
heterogeneities at different scales. Comparison of these meth-
ods can be a powerful tool for finding the most accurate maps, 
which later can be used as inputs in precision soil quality man-
agement (Stoorvogel et al., 2015; Balducci et al., 2018). In some 
cases, within cultivation parcels with small sizes, it is urgent to 
have an overview of the spatial variability of soils to cut down 
the expenses related to sampling and increase productivity. In 
this study, we want to point out these objectives in two areas 
which differ from topography, parent materials, and soil texture; 
i) predict the spatial distribution of soil properties, including soil 
organic carbon (SOC) content, bulk density (BD), and SOC stock 
using machine learning techniques; ii) assess the efficiency and 
potential of different models for both study areas; iii) depen-
dency of model construction and applicability of these methods 
for different physiographic conditions. We supposed that within 

these areas, the spatial variability of soil properties is largely 
influenced by on the variability of topography. Therefore, this 
study not only provides a comprehensive comparison of dif-
ferent machine learning techniques but also provides insight 
into how these methods perform in different physio geographic 
conditions, making it a valuable contribution to the field of soil 
mapping and management.

2. Materials and methods

2.1. Study sites

Two study sites (Fig. 1) with a comparable extent on the 
Great Hungarian Plain were selected for mapping of soil char-
acteristics in detail. Both are managed in the framework of 
long-term crop rotation and plant nutrition for the Universi-
ty of Debrecen. The climate of the study areas belongs to the 
warm temperate, fully humid climate with warm summers 
(Kottek et al., 2006). Both are located on an early Pleistocene al-
luvial plain, reshaped partially or totally by aeolian processes 
(sand and dust re-deposition, and loess deposition) during the 
late Pleistocene. 

The Westsik Vilmos crop rotation experimental station 
(47°59′21′′ – 47°58′35′′ N; 21°41′57′′ – 21°42′18′′ E) was founded in 
1929 with a area of 47 ha in the direct vicinity of Nyíregyháza, 
on a slightly undulating sandy landscape, at 101–105 m a.s.l, 
with 1.5–5% average slope. It aimed to improve sand textured, 
poorly aggregated soils, poor in SOC. It is one of the oldest in 
Europe, and the management involves the regular application of 
standardized amounts of fertilizers and plowing green manure 
crops into the soil.

The Látókép long-term field experiment (47°32′30′′ – 
47°33′44′′ N; 21°26′15′′ – 21°27′11′′ E) is located on a plain area 
with flat topography, at about 111–114 m a.s.l.. It has few eleva-
tion differences and a 0.5–1% average slope, with deep, well-ag-
gregated, mollic topsoil, with secondary carbonate accumula-
tions. Long-term experiments were founded here in 1983 and 
recently include fertilization, cultivation, and irrigation experi-
ments over 160 ha.

2.2. Soil sampling and analysis

Thirty sampling points were determined based on the con-
ditioned Latin Hypercube Sampling (cLHS) method to reason-
ably cover the spatial variation of soil properties in both study 
areas. The cLHS is a kind of stratified random sampling design 
efficient locations based on the variability of environmental co-
variates in feature space (Brungard and Boettinger, 2010). The 
covariates mainly extracted from DEM and Landsat images (see 
Section 2.3), and then principal component analysis was used to 
select the most important features. Therefore, the input data of 
the cLHS were elevation, slope, topographic wetness index, the 
normalized difference vegetation index (NDVI), Band 3, 7, and 
9 of Landsat 8 images. The R package “clhs” was used for this 
sampling design (Hateffard and Novák, 2021). Each sampling 
point was sampled in triplicates with 100 cm3 metal cylinders 
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to determine bulk density. Soil samples representing the upper-
most 10 cm of the surface were collected for basic laboratory 
analysis.

The SOC content was determined by the wet oxidation 
method (Davies, 1974). Also, we calculated SOC stock obtained 
from SOC and bulk density based on the following equation:

SOCstock = SOC · BD · D,

Where SOCstock is the soil organic carbon stock [unit: g cm–2], SOC 
is the soil organic carbon content [unit: percentage of soil dry 
mass], BD is the bulk density [unit: g cm–3], and D stands for soil 
thickness [unit: cm] which was 10 cm in our case. Due to us-
ing a more convenient way of expressing SOC stock, we trans-
formed the unit to [tons·ha–1], as it is more common and easy to 
interpret.

2.3. Environmental covariates

Covariates representing the soil forming factors were em-
ployed to map the selected soil properties (Dai et al., 2014). As 
we described (Section 2.1), the climate, land cover, and parent 
material can be considered homogeneous over the study area. 
Therefore, a digital elevation model (Bashfield and Keim, 2011) 

with a spatial resolution of 26 m was used for characterizing to-
pography and relief conditions. Various terrain attributes were 
derived including elevation, slope, aspect, plan and profile cur-
vature, LS-factor, positive and negative openness, terrain rug-
gedness index, multiresolution index of valley bottom flatness, 
multiresolution index of ridge top flatness, topographic wetness 
index, valley depth and deviation from mean value (Tool Fo-
cal Statistics) using ArcGIS (http://www.esri.com) and SAGA GIS 
(Conrad et al., 2015). Moreover, additional information about the 
topsoil based on spectral data was obtained via Landsat 8 satel-
lite imagery (https://earthexplorer.usgs.gov) which had been col-
lected in February 2019 with a spatial resolution of 30 m. The 
NDVI (Band 5/4), Clay (hydroxyls) normalized ratio (Band 6/7), 
and Carbonate normalized ratio (Band 4/3) was calculated from 
Landsat 8 (John et al., 2020). Therefore, we assumed that this 
approach would provide certain soil features from remotely 
sensed information. All the auxiliary variables are projected in 
the same spatial dimension into a Universal Transverse Merca-
tor (UTM) Zone 34N coordinate system. Then, resampling was 
applied to harmonize the resolution of 30 m for input layers to 
further process; accordingly, the final maps are also in the same 
resolution. This information was assigned corresponding to eve-
ry geo-referenced soil sample. 

Fig. 1. Study area; a: locations of study area in Hungary, b: locations of study areas in related microregions, Látókép located 
in Hajdúhát and Westsik located inNagykállói-Nyírség, c: Látókép, d: Westsik.
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2.4. Machine learning algorithms

In soil mapping, MLAs can significantly explain and model 
complex non-linear relationships between soil properties and 
the available environmental variables related to the soil-form-
ing factors (Hengl et al., 2018). In this study, the following MLAs 
were applied: multiple linear regression (MLR), random forest 
(RF), artificial neural networks (ANN), and support vector ma-
chine (SVM). Note that only a brief introduction on the MLAs 
used in this study is provided as they are frequently used in 
DSM; for more details, see the cited papers and textbooks.

2.4.1. Multiple linear regression (MLR)
Multiple linear regression is a statistical model represent-

ing the relation between various independent variables and the 
response variable (Piekutowska et al., 2021). The premise of this 
algorithm is the existence of a linear relationship between inde-
pendent and dependent variables that lead to applying a straight 
line between the points. Hence, this assumption could be a limi-
tation since linearity rarely stands in soil science (Forkuor et al., 
2017).

2.4.2. Random Forest (RF)
The Random Forest (RF) algorithm is based on the classi-

fication and regression trees that runs by building many deci-
sion trees at training time (Breiman, 2001; Hengl et al., 2018). In 
this model, the number of trees and covariables to split in each 
node, namely mtry, are the most powerful items which can be 
fine-tuned and generate more accurate results (Ghafouri Kesbi 
et al., 2016). In the end, the weighted average of individual trees 
will be the concluding predictions. RF is available to implement 
through several packages in R, and we applied the R package 
“randomForest”  based on Breiman’s (2001) original RF algo-
rithm.

2.4.3. Artificial Neural Network (ANN)
The artificial neural network (ANN) is another machine 

learning algorithm that simulates biological neurons’ structure 
and attempts to allow computers to learn similarly to humans’ 
brains. Multi-layer perceptron is the most frequently used ANN 

type (Ghaderi et al., 2019), which follows the feed-forward mod-
el, meaning inputs are sent into the neuron, processed, and re-
sult in an output. Therefore, it consists of three layers, i.e., input 
layer, hidden layer, and linear output layer (Liu et al., 2020). The 
best results arise from trial and error in changing the number 
of neurons in the hidden layer during the training stage. In this 
study, we adopted neural networks backpropagation using the 
“neuralnet” package in R. 

2.4.4. Support Vector Machine (SVM)
Support Vector Machine (SVM) was developed in 1990 as 

a supervised learning model that classifies the data based on 
optimal separating hyperplane using kernel function for linear 
and non-linear patterns. The hyperplane is fixed by maximiz-
ing the margins of class boundaries (Were et al., 2015). In this 
model, certain parameters are effective in model performance, 
including cost (C) and gamma (γ) (Tang et al., 2020). Cost is the 
parameter for the soft margin, which controls the influence of 
each support vector, and the process involves trading error pen-
alty for stability. Cost and width of margin have reverse rela-
tionships. Gamma is the free parameter of the Gaussian radial 
basis function which works with non-linear kernel functions. 
A small gamma means that the class of this support vector will 
have a significant influence; consequently, if the gamma is large, 
then the variance is slight (James et al., 2013). We used „e1071” 
package in R to utilize this model.

2.5. Validation

The datasets were randomly split into two sets. Two-thirds 
of the data went to the train set, which were used for training, 
whereas one-third of the data went to the test set, which was 
used for evaluating the models‘ performance. To compare and 
evaluate the performance of the four MLAs for each soil proper-
ty in both study areas, we used the “goof” function of the R pack-
age “ithir”, which compute a number of error measures. In this 
study, we evaluated the performance of each model based on 
their R2 and root mean square error (RMSE), prioritizing models 
with higher R2 values and smaller RMSE values. We summarized 
the methodology used in this study as a flowchart in Fig. 2.

Fig. 2. Flowchart of the methods and approaches used in this study. Ab-
breviations: cLHS: conditioned Latin Hypercube Sampling, SOC: soil or-
ganic carbon content, BD: bulk density, SOC stock: soil organic carbon 
stock, MLR: multiple linear regression, RF: random forest, NN: neural 
network, and SVM: support vector machine.
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3. Results 

3.1. Soil properties

The Table 1 presents the statistical 
summary of selected soil properties in 
both study areas. In te rms of SOC con-
tent, Látókép has a significantly higher 
mean value of 1.76 g·kg–1 compared to 
Westsik’s mean value of 0.40 g·kg–1. The 
SOC content in Látókép ranged from 
1.29 to 2.33 g·kg–1, while the range in 
Westsik was wider, varying from 0.91 to 4.15 g·kg–1. 
BD also shows some differences between the two ar-
eas, with Látókép having a slightly lower mean value 
of 1.28 g·cm–3 compared to Westsik’s mean value of 
1.38 g·cm–3. Also, the minimum and maximum values 
of SOC stock in Látókép were also higher than those 
in Westsik.

3.2. Comparison of MLAs 

As it was mentioned, we fine-tuned the hyper-
parameters of each MLAs to achieve higher perfor-
mance. For this purpose, the number of trees selected 
in RF was 50, with mtry between 6 and 8. Changes 
in the number of hidden neurons can lead to tuning 
the ANN, for which we employed a combination of 
3 and 5 layers. “Tune” function in the “e1071” pack-
age gives the possibility to specify the best cost and 
gamma combination for SVM in each dataset. Here, 
the cost = 10 and gamma = 2 achieved the best model 
performance. Afterward, we calculated the values of 
RMSE and R2 to check model accuracy. Table 2–5 sum-
marize the performance of the fine-tuned MLAs in 
Látókép and Westsik, respectively, which were com-
pared to the results of validation carried out on the 
test dataset.

First of all, in the calibration dataset related to 
the Látókép (Table 2), MLR has shown the highest R2, 
which was around 95% in these properties, following 
RF (R2 = 80% ~ 90%), then ANN, and SVM, which il-
lustrate nearly similar capability to predict. However, 
considering RMSE, ANN performs the worst values 
in SOC content and SOC stock while the MLR, RF, and 
SVM are quite the same, but the least RMSE related to 
MLR, which is 0.01 for bulk density, 0.05 SOC content, 
and 0.69 SOC stock. In the second place, assessing the 
results of the test dataset (Table 3), as evident from 
the tables, RF achieved the highest accuracy regarding 
R square and RMSE (R2 ≈ 0.8). At the same time, MLR 
and ANN outcomes have the most unfavorable results. 

The outcome in Westsik dataset is the same as in 
the Látókép. MLR operated more effectively in calibra-
tion than other models (R2 = 0.9), followed by RF, ANN, 
and SVM, that the R-squared values of the fitted model 
are around 0.8, 0.7, and 0.5, respectively (Table 4). 

Table 1
Summary statistics of soil properties in both study areas

Study area Látókép Westsik

Property Unit Min Max Mean SD Min Max Mean SD

SOC content g⋅kg–1 1.29 2.33 1.76  0.24 0.29 4.15 0.91 0.40

BD g⋅cm–3 1.12 1.46 1.28 0.10 1.15 1.56 1.38 0.09

SOC stock  t⋅ha–1 16.71 31.72 22.60 3.11 4.56 22.9 11.07 5.32

Table 2
Summary of the fine-tuned machine learning algorithms on the train dataset in 
Látókép. 

Model Bulk density SOC content SOC stock

R2 RMSE R2 RMSE R2 RMSE

MLR 0.990 0.010 0.951 0.053 0.957 0.691

RF 0.797 0.047 0.812 0.104 0.902 1.039

ANN 0.936 0.026 0.509 0.296 0.136 3.100

SVM 0.609 0.066 0.678 0.136 0.774 1.582

Abbreviations: MLR: multiple linear regression, RF: random forest, ANN: artifi cial 
neural network, SVM: support vector machine, SOC: soil organic carbon, and RMSE: 
root means square error.

Table 3
The predictive performance of the fine-tuned machine learning algorithms on the 
test dataset in Látókép. 

Model Bulk density SOC content SOC stock

R2 RMSE R2 RMSE R2 RMSE

MLR 0.064 0.863 0.046 0.558 0.039 4.358

RF 0.885 0.035 0.821 0.104 0.882 0.739

ANN –0.746 0.138 –0.456 0.299 –0.274 2.432

SVM 0.188 0.114 0.270 0.258 0.090 2.054

Abbreviations: MLR: multiple linear regression, RF: random forest, ANN: artifi cial 
neural network, SVM: support vector machine, SOC: soil organic carbon, and RMSE: 
root means square error.

Table 4
Summary of the machine learning algorithms on the train dataset in Westsik. 

Model Bulk density SOC SOC stock

R2 RMSE R2 RMSE R2 RMSE

MLR 0.969 0.015 0.989 0.029 0.934 1.226

RF 0.791 0.039 0.878 0.292 0.853 1.830

ANN 0.761 0.042 0.989 0.041 0.453 5.775

SVM 0.590 0.055 0.516 0.584 0.739 2.445

Abbreviations: MLR: multiple linear regression, RF: random forest, ANN: artifi cial 
neural network, SVM: support vector machine, SOC: soil organic carbon, and RMSE: 
root means square error.
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Likewise, the RF technique performed quite favorably 
and achieved the best R2 (0.8) and the least RMSE in 
the test dataset. Afterward, the other three models 
misbehaved in the test dataset, indicating raised RMSE 
and deficient R2 (Table 5).

When it comes to the final maps produced by each 
model, it is also visible that the RF model succeeded in 
showing the most detailed information related to the 
distribution of each property across the study areas 
(Fig. 3 and 4). Of course, the other maps also contain 
worthy information; also, they were capable of ex-
plaining the whole pattern of the sites. However, we 
can observe that the prediction range is unrealistic for 
some properties. 

Fig. 3. Final maps predicted by each model in Látókép. Abbreviation: SOC: soil organic carbon content, BD: bulk density, SOC stock: soil 
organic carbon stock, RF: random forest, MLR: multiple linear regression, NN: neural network, and SVM: support vector machine.

Table 5
The predictive performance of the fine-tuned machine learning algorithms on the 
test dataset in Westsik. 

Model Bulk density Organic Carbon Soil carbon stock

R2 RMSE R2 RMSE R2 RMSE

MLR 0.240 0.524 0.023 1.857 0.137 20.956

RF 0.823 0.047 0.80 0.165 0.856 2.117

ANN –0.169 0.123 0.206 0.330 –0.737 7.363

SVM 0.010 0.114 0.295 0.311 0.018 5.534

Abbreviations: MLR: multiple linear regression, RF: random forest, ANN: artifi cial 
neural network, SVM: support vector machine, SOC: soil organic carbon, and RMSE: 
root means square error.
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Fig. 4. Final maps predicted by each model in Westsik. Abbreviation: SOC: soil organic carbon content, BD: bulk density, SOC stock: soil organic 
carbon stock, RF: random forest, MLR: multiple linear regression, NN: neural network, and SVM: support vector machine.

3.3.  Relationship and importance of environmental 
covariates in mapping soil properties

The relationship between SOC content and predictor vari-
ables in Látókép is presented in Fig. 5. SOC has a relatively strong 
correlation with elevation (–0.541), plan curvature (–0.586), 
multiresolution index of the ridge top flatness (–0.529), valley 
depth (0.538) which were extracted from DEM and carbonate 
index (0.476) obtained by Landsat images. On the other hand, 
a poor but meaningful relationship has been seen between SOC 
content and slope (0.231), NDVI (–0.247), and terrain ruggedness 
index (0.245). Similarly, valley depth (0.414), elevation (–0.437), 

clay index (–0.582), and NDVI (–0.592) are the predictors which 
explain the potent relationship with SOC content in the West-
sik area. In contrast, the relationship between SOC content and 
slope, terrain roughness index, and openness is relatively weak 
in Westsik (Fig. 6).

Variable importance measures, one of the byproducts of the 
RF model, confirm which predictors are the most influential in the 
modeling and predicting process. Here, the results of most signifi-
cant variables for SOC content, bulk density, and SOC stock based 
on the RF model are presented in Fig. 7 and 8 for Látókép and 
Westsik, respectively. The study in Látókép indicated that the plan 
curvature and valley depth were the dominant factors in explain-
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ing the spatial variability of SOC content and SOC stock. Addition-
ally, the multiresolution index of ridge top flatness, elevation, and 
NDVI were found to play a significant role in determining the BD 
in Látókép (Fig. 7). On the other hand, in Westsik, the most crucial 

variable in explaining the spatial variation of SOC content and 
SOC stock was NDVI. Furthermore, the variables that contributed 
significantly to predicting BD were the multiresolution index of 
valley bottom flatness, elevation, and carbonate index (Fig. 8).

Fig. 8. Variable importance based on RF for 
each properties in Westsik. Abbreviations: 
hcurv and vcurve: plan and profile curvature, 
ls: ls-factor, opennessp and opennessn: posi-
tive and negative openness, tri: terrain rugged-
ness index, vbf: multiresolution index of val-
ley bottom flatness, rtf: multiresolution index 
of ridge top flatness, twi: topographic wetness 
index, vdepth: valley depth, devmean: devia-
tion from mean value, carbonate: carbonate 
normalized ratio, NDVI: normalized difference 
vegetation index, SOC stock: soil organic car-
bon stock, and BD: bulk density.

Fig. 5. Correlation between predictors and soil organic carbon content 
(SOC) in Látókép. Abbreviations: hcurv and vcurve: plan and profile 
curvature, ls: ls-factor, opennessp and opennessn: positive and negative 
openness, tri: terrain ruggedness index, vbf: multiresolution index of val-
ley bottom flatness, rtf: multiresolution index of ridge top flatness, twi: 
topographic wetness index, vdepth: valley depth, devmean: deviation 
from mean value, carbonate: carbonate normalized ratio, NDVI: normal-
ized difference vegetation index, SOC stock: soil organic carbon stock, 
and BD: bulk density.

Fig. 6. Correlation between predictors and soil organic carbon content 
(SOC) in Westsik. Abbreviations: hcurv and vcurve: plan and profile 
curvature, ls: ls-factor, opennessp and opennessn: positive and negative 
openness, tri: terrain ruggedness index, vbf: multiresolution index of val-
ley bottom flatness, rtf: multiresolution index of ridge top flatness, twi: 
topographic wetness index, vdepth: valley depth, devmean: deviation 
from mean value, carbonate: carbonate normalized ratio, NDVI: normal-
ized difference vegetation index, SOC stock: soil organic carbon stock, 
and BD: bulk density.

Fig. 7. Variable importance based on RF for 
each properties in Látókép. Abbreviations: 
hcurv and vcurve: plan and profile curvature, 
ls: ls-factor, opennessp and opennessn: posi-
tive and negative openness, tri: terrain rugged-
ness index, vbf: multiresolution index of val-
ley bottom flatness, rtf: multiresolution index 
of ridge top flatness, twi: topographic wetness 
index, vdepth: valley depth, devmean: devia-
tion from mean value, carbonate: carbonate 
normalized ratio, NDVI: normalized difference 
vegetation index, SOC stock: soil organic car-
bon stock, and BD: bulk density.
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4. Discussion

4.1.  Interpretation of the relationship between soil 
properties and environmental covariates

The Fig. 7 revealed that plan curvature, valley depth, mul-
tiresolution index of valley bottom flatness, and elevation were 
the four most relevant predictors for mapping SOC content, 
bulk density, and SOC stock in the Látókép. While in Westsik, 
NDVI and carbonate index, multiresolution index of valley bot-
tom flatness, elevation, and openness were the strongest ones 
(Fig. 8). This result proves the importance of topographic indices 
in representing landscape morphometry, which (Heung et al., 
2016) support. Similarly, Forkour et al. (2017) recorded elevation 
as the most significant covariate for SOC and nitrogen spatial 
distribution. (Piccini et al., 2014) found that parameters driven 
by DEM, including topographic wetness index, plan and profile 
curvature, and soil type, were among the most significant fac-
tors in estimating soil organic matter.

In Látókép, Landsat indices have less power to explain 
the variability of soil properties, as the markable influence of 
NDVI was observed only in bulk density. Similar conclusions 
were reported by Piccini et al., 2014). On the other hand, the 
most influential predictors in Westsik were the NDVI and clay 
index extracted from remote sensing data, which was marked 
by (Asgari et al., 2020). In addition, Bhunia et al. (2019) estimated 
spatial SOC stock with satellite data-derived indices and a multi-
variate regression model, which approved a significant relation 
between NDVI and SOC stock. Contrary to the report by Dai et 
al.(2014), the correlation between environmental variables and 
organic matter content should not be necessarily high. These re-
lations were shallow in their case study, especially for elevation, 
precipitation, and NDVI. Also, in the other studies of (Mosleh et 
al., 2016; Song et al., 2017; John et al., 2020), the inability of envi-
ronmental variables to predict soil properties, especially in low 
relief conditions, were reported.

4.2. Advances and limits of the applied MLAs

Each model has its pros and cons in predictability, which 
depends on various soil forming factors and local/regional con-
ditions. But our research clearly shows that RF has an advan-
tage over MLR, SVM, and ANN in both areas, though with lim-
ited number of observations. The benefits of RF are doing great 
with handling outliers, unbalanced data, non-linear data, and 
complex relationships (Ao et al., 2019). Furthermore, Hengl et al. 
(2018) presented that the RF model is an attractive and popular 
model for spatial predictions. Besides, they described the most 
important characteristics of this model, which include flexibility 
in combining, incorporating, and extending covariates of differ-
ent types and the ability to make more informative and detailed 
maps. John et al. (2020) utilized different machine learning algo-
rithms to predict SOC stock, including ANN, SVM, cubist, RF, and 
MLR. They choose RF as the best-performing model and MLR as 
the poorest one. Despite this, Were et al. (2015) reported better 
performability of SVM rather than RF and ANN in predicting SOC 
stocks. Moreover, Tang et al. (2020) used MLR and SVM to pre-

dict the biodegradation rate of organic chemicals. They claimed 
that SVM models have satisfactory goodness-of-fit, robustness, 
and external predictive abilities.

The failure of MLR in this research could be the non-lin-
earity relationship between soil properties and environmental 
variables, but here the relationships between variables are com-
plex. Forkuor et al. (2017) stated the inability of MLR to manage 
non-linear relationships between variables and better perform-
ance of other machine learning algorithms compared to MLR. In 
the case of ANN, noticing negative R2 is not a mathematical or 
computational issue. Still, such an outcome means the model be-
haved even worse than if we only used the spatial average of the 
data for prediction, and the observed mean is a better predictor 
than the model by itself. One of the main reasons for ANN’s in-
ability to predict can be the limited observation (Moody, 1994). 
However, the high predictability of ANN was confirmed by many 
studies. For example Zhao et al. (2008), in their research on soil 
texture prediction with an artificial neural network, achieved a 
relative overall accuracy of 80% for clay and sand content which 
is an acceptable result. Furthermore, Li et al. (2013) reported 
that the radial basis function neural network model performed 
much better than multiple linear regression and regression krig-
ing in predicting SOC, moreover showed a more realistic spatial 
pattern.

4.3. Spatial distribution of selected soil properties 

In these two study areas, a clear spatial distribution pattern 
of soil properties is evident in RF maps (Fig. 3 and 4). Therefore, 
we will describe the broad overview of each property mainly 
based on RF predictions. In Látókép, the southeast and southwest 
have higher SOC content; if we move along the western border, 
some narrow parts still have high SOC content until we reach 
northern parts with brighter spots, which means lower SOC con-
tent. In the central part of the area, we can observe different 
values of SOC content as small patches. In MLR maps, there are 
many white patches that show out-of-range values. While in the 
Westsik area, the western part has higher values in SOC content, 
BD, and SOC stock, which NDVI maps and elevation differences 
might influence. Lower values of SOC content can be found on 
the eastern side of the area.

Soil surface characteristics and soil profile horizonation 
show remarkable differences between the two study sites. The 
soil texture in Látókép is silt loam, and the soil texture in West-
sik has wider variability from loamy sand to sandy loam at the 
surface. Despite textural differences between the two areas, the 
bulk density of surface soil samples are slightly higher in the 
Westsik due to the sandy texture. Still, standard deviations are 
pretty similar in both sites, thanks to the similar techniques ap-
plied in plowing. 

The average SOC content proved to be almost twice higher 
in the Látókép, with a remarkably smaller standard deviation, 
than in the Westsik (Table 1). Generally, the spatial variability 
of selected properties in the Westsik is more expansive, while in 
the Látókép, it appears more homogenous than the other. These 
differences can be reasonable, considering the elevation and re-
lated attributes heterogeneity which also can be recognized in 
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the importance plot of the covariates (Fig. 7 and 8). These fac-
tors, like the influence of elevation, affect many soil processes; 
for example, the local depression causes the deposition of SOC 
while higher positions are exposed to erosion, precipitation, and 
transportation. 

5. Conclusions

This study aimed to investigate the applicability of differ-
ent MLAs in predicting SOC content, bulk density, and SOC stock 
in two geographical conditions to display the spatial variability 
of these properties and the dependency of model building. We 
examined and compared four statistical models: RF, MLR, ANN, 
and SVM. Our work has led us to conclude that the RF technique 
achieved more reliable results than the other models, especially 
with limited number of observations. In contrast, SVM, MLR, 
and ANN did not deliver satisfactory results for both provided 
accuracy and spatial pattern. In addition, we indicated the im-
portance of relief characteristics and spectral information, in-
cluding elevation, plan and profile curvature, valley depth, and 
NDVI, in predicting soil properties. Our results highlighted the 
importance of differences in topography compared to each oth-
er, leading to observing different spatial variations of selected 
soil properties across the areas. Overall, these prediction accu-
racies and the provided pattern in the final maps by RF seem 
trustworthy, considering the actual situation in both field and 
expert knowledge. These two study areas, Látókép and Westsik, 
are both research experiments fields; therefore, detailed infor-
mation about the spatial distribution of soil properties would 
support sustainable management practices and precision agri-
culture.
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