Assessment of soil erosion risk severity using GIS, remote sensing and RUSLE model in Oued Laou Basin (north Morocco)
Omayma Amellah 1  
,   Karim el Morabiti 1  
More details
Hide details
Department of Geology, Faculty of Sciences, Abdlmalek Essaadi University, Tetouan, Morocco
Omayma Amellah   

Department of Geology, Faculty of Sciences, Abdlmalek Essaadi University, Tetouan, Tetouan, Morocco
Submission date: 2021-02-23
Final revision date: 2021-07-20
Acceptance date: 2021-09-23
Online publication date: 2021-12-31
Publication date: 2021-12-31
Soil Sci. Ann., 2021, 72(3)142530
Soil loss by lateral flow is a critical bother in the Oued Laou basin due to the steepness of its landscape relief and the considerable deference altitudinal between the upstream and downstream area. Those predispositions highly increase soil vulnerability to the risk of erosion indeed; tones of sediment are transported each year, causing significant damages regarding structures and waterworks such as siltation. For this reason, this work focus on the merging of remote sensing techniques, GIS, and the Revised Universal Soil Loss (RUSLE) Equation to quantitatively evaluate soil erosion severity as well as highlight the most erosion-prone areas in the Oued Laou basin, Northwestern Morocco. Accordingly, the study site area was arranged into six soil erosion risk categories: very slight (25.3%), slight (12.4%), moderate (40.5 %), intense (12.2%), very intense, (5%) and severe (4.6%). Moderate to severe soil loss rates that are correlated to abrupt slopes defined most of the basin area. In addition to the spatial distribution of soil severity classes over the study area, the average annual soil erosion rate was estimated to be 31.5 t ha–1 year–1 in the Oued Laou watershed. The latter amount was compared to many previous studies that have been carried out in the surrounding basins based on RUSLE or other techniques to validate the model accuracy.
Abdo, H., Salloum J., 2017. Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environmental Earth Sciences 76, 1–10.
Aït Brahim, L., Sossey Alaoui, F., Siteri, H. et al., 2003. Quantification of soil loss in the Nakhla watershed (northern Rif). Sécheresse - Science et changements planétaires 14(2), 101-106.
Amellah, O., El Morabiti, K., Ouchar Al-djazouli, M., 2020. Spatialization and assessment of flood hazard using 1D numerical simulation in the plain of Oued Laou (north Morocco). Arabian Journal of Geosciences 13, 635.
Angima, S.D., Stott, D.E., O’Neill, M.K., Ong, C.K., Weesies, G.A., 2003. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture Ecosystems & Environment 97,295–308.
Arnhold, S. Lindner, S. Lee, B., Martin, E., Kettering, J., Nguyen, T.T., 2014. Conventional and organic farming: soil erosion and conservation potential for row crop cultivation. Geoderma 219-220, 89–105.
Balasubramani, K., Veena, M., Kumaraswamy, K., Saravanabavan, V., 2015. Estimation of soil erosion in a semi-arid watershed of Tamil Nadu (India) using revised universal soil loss equation (RUSLE) model through GIS. Model Earth Systems and Environment 1(3), 10.
Bonn, F., 1998. La spatialisation des modèles d’érosion des sols à l’aide de la télédétection et des SIG : possibilités, erreurs et limites. Sécheresse 9(3), 185-192.
Brady, NC., Weil, RC., 2012. The nature and properties of soils. Pearson education, New Delhi.
Butt, M.J., Waqas, A., Mahmood, R. CSHRG., 2010. The combined effect of vegetation and soil erosion in the water resource management. Water Resources Management 24(13), 3701-3714.
Damnati, B., Chatt, A., Hamani, M. et al., 2006. L’érosion hydrique et sa quantification par le radioélément 137Cs au niveau du bassin versant du barrage Raouz (Région de Tanger-Tétouan). TANCA-01. Workshop sur les techniques analytiques, nucléaires et conventionnelles, et leurs applications, Rabat, p38.
Demirci, A., Karaburun, A., 2012. Estimation of soil erosion using RUSLE in a GIS framework: a case study in the buyukcekmece lake watershed, northwest Turkey. Environmental Earth Science 66, 903–913.
Dhman, H., 1994. Utilisation des SIG et des télédétections dans l’étude de l’érosion hydrique: application au bassin versant de Tleta. Mémoire de troisième cycle, ENFI, Salé, 120 p.
Dissanayake, D.,Morimoto, T., Ranagalage, M., 2018. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: a case study of the Kotmale watershed, Sri Lanka Modeling. Earth Systems and Environment 5, 291-306.
Dotterweich, M., Stankoviansky, M., Minár J., Koco, Š., Papčo P., 2013. Human induced soil erosion and gully system development in the Late Holocene and future perspectives on landscape evolution: The Myjava Hill Land, Slovakia. Geomorphology 201, 227–245.
Dutta, D., Das S., Kundu, A., Taj, A., 2015. Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Modeling Earth Systems and Environment,1, 37.
Farhan, Y., Nawaiseh, S., 2015. Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environmental Earth Sciences 74, 4649–4669.
Ganasri B.P., Ramesh H., 2015. Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers, XXX, 1-9.
Gayen, A., Saha, S., Pourghasemi, H.R., 2019. Soil erosion Assessment using RUSLE model and its Validation by FR probability model. Geocarto International 35(15), 1750-1768.
Jarašiūnas, G., Świtoniak, M., Kinderienė, I., 2020. Dynamics of slope processes under changing land use conditions in young morainic landscapes, Western Lithuania. International Agrophysics 34, 43-55.
Jobin, T., Sabu, J., Thrivikramji, K.P., 2018. Assessment of soil erosion in a monsoon-dominated mountain river basin in India using RUSLE-SDR and AHP. Hydrological Sciences Journal 63(4), 542-560,
Kayet, N., Pathak, K., Chakrabarty, A., Sahoo, S., 2018. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method in hillslope mining areas. International Soil and Water Conservation Research 6, 31–42.
Khali Issa, L, Raissouni, A., Moussadek, R., et al., 2014. Mapping and assessment of water erosion in the Khmiss Watershed (North Western Rif, Morocco). Current Advances in Environmental Science, 4, 119-130.
Kouli, M., Soupio, P., Vallianatos, F., 2009. Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework Chania, northwestern Crete, Greece. Environmental Geology 57, 483–497.
Krishna Bahadur, K. C., 2009. Mapping soil erosion susceptibility using remote sensing and GIS: a case of the Upper Nam Wa Watershed, Nan Province, Thailand. Environmental Geology 57, 695–705.
Lu, D., Mausel P., Batistella, M., Moran, E., 2004. Comparison of landcover classification methods in the Brazilian Amazonia basin. Photogrametric Engineering and Remote Sensing 70, 723–731.
Merzouki, T., 1992. Diagnostic de l’envasement des grands barrages marocains. La Revue marocaine du Génie civil 38, 46-50.
Miheretu, B.A., Yimer, A.A., 2018. Estimating soil loss for sustainable land management planning at the Gelana sub-watershed, northern highlands of Ethiopia. International Journal of River Basin Management 16(1), 41–50.
Millward, A. A, Mersey, J. E., 1999. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 38,109–129.
Moukhchane, M., Bouhlassa, S., Chalouan, A., 1998. Approche cartographique et magnétique pour l’identification des sources de sédiments : cas du bassin versant Nakhla (Rif, Maroc). Sécheresse 3(9), 227- 232.
Munodawafa, A., 2007. Assessing nutrient losses with soil erosion under different tillage systems and their implications on water quality. Physics and Chemistry of the Earth Parts A/B/C 32, 1135–1140,
Mutua, B.M., Klik, A. Loiskandl W., 2006. Modelling soil erosion and sediment yield at a catchment scale: the case of Masinga catchment, Kenya. Land Degradation & Development 17(5), 557-570.
Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Naderi, M., Dematte, J. A. M., 2017. Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Regional 11, 28-36. ,
Ouallali, A., Moukhchane, M., Aassoumi, H., Berrad, F., Dakir, I., 2017. Evaluation and mapping of water erosion rates in the watershed of the Arbaa Ayacha River (Western Rif, Northern Morocco). Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre, 2016, 38, 65-79.
Pal, S. C., Chakrabortty, R., 2019. Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research 64, 352–377.
Pan, J., Wen, Y., 2014. Estimation of soil erosion using RUSLE in Caijiamiao watershed. China Natural Hazards, 71, 2187–2205.
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., et al., 2015. The new assessment of soil loss by water erosion in Europe. Environmental. Science and Policy 54, 438–447.
Pandey, A., Chowdary, V.M., Mal, B.C., 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resources Management 21 (4), 729–746.
Park, S., Oh, C., Jeon, S., Jung, H., Choi, C., 2011. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. Journal of Hydrology 399, 263–273.
Poesen, J. Nachtergaele, J. Verstraeten, G., Valentin, C., 2003. Gully erosion and environmental change: importance and research needs. Catena 50, 91-133.
Pradeep, G. S, Ninu Krishnan, M. V, Vijith, H., 2015. Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques. Arabian Journal of Geosciences 8, 3697–3711.
Prasannakumar, V. Vijith, H. Abinod, S., Geetha, N., 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geoscienes Frontiers 3, 209–215,
Radziuk, H., Świtoniak, M., 2021. Soil erodibility factor (K) in soils under varying stages of truncation. soil science annual, 72, 1-8.
Renard, K, Foster, GR,Wessies, GA, Porter, JP., 1994. RUSLE-Revised universal soil loss equation. Journal of Soil and Water Conservation 46, 30–33. 2.
Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA Agricultural Handbook, No. 703.
Rickson, R. J., 2014. Can control of soil erosion mitigate water pollution by sediments?. Science of the Total Environment., 468–469, 1187–1197.
Sadiki, A., Bouhlassa, S., Auajjar, J. et al., 2004. Utilisation d’un SIG pour l’évaluation et la cartographie des risques d’érosion par l’Equation universelle des pertes en sol dans le Rif oriental (Maroc): cas du bassin versant de l’Oued Boussouab. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, n°26, 69-79.
Sadiki, A., Faleh, A., Zezerze, J.L. et al., 2009. Quantification de l’erosion en nappe dans le bassin versant de l’Oued Sahla, Rif occidental Maroc. Cahiers géographiques 6, 59-70.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116, 173–184.
Tahiri, M., Tabyaoui, H., El Hammichi, F. et al., 2014. Evaluation et Quantification de l’Erosion et la Sédimentation à Partir des Modèles RUSLE, MUSLE et Déposition Intégrés dans un SIG : Application au Sous-Bassin de l'Oued Sania (Bassin de Tahaddart, Rif nord occidental, Maroc). European Journal of Scientific Research 125(2), 157-178.
Teng, H.F., Viscarra Rossel, A.V., Shi Z., Behrens, T., Chappell, A., Bui, E., 2016. Assimilating satellite imagery and visible-near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environmental Model and Software 77, 156–167.
Teng, H., Liang, Z., Chen, S., Liu, Y., Rossel, R. A. V., Chappell, A., Yu, W. & Shi, Z., 2018. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment 635, 673–686.
Terranova, O., Antronico, L., Coscarelli, R., Iaquinta, P., 2009. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology 112, 228–245.
Tessema, Y.M., Jasińska J., Yadeta L.T., Świtoniak M., Puchałka R., Gebregeorgis E.G., 2020. Soil Loss Estimation for Conservation Planning in the Welmel Watershed of the Genale Dawa Basin, Ethiopia. Agronomy 10, 777.
Thomas, J., Joseph, S. Thrivikramji, K.P., 2018. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers 9, 893-906 .
Vaezi, A.R., Sadeghi, S.H., 2011. Evaluating the RUSLE model and developing an empirical equation for estimating soil erodibility factor in a semi-arid region. Spanish Journal of Agricultural Research 9(3), 912-923.
Van Oost, K., Van Muysen, W., Govers, G., Heckrath, G., Quine, T.A., Poesen, J., 2003. Simulation of the redistribution of soil by tillage on complex topographies. European Journal of Soil Sciences 54, 63–76.
Vander Knijff, J.M., Jones R.J.A., Montanarella L., 2000. Soil erosion risk assessment in Europe. European SoilBureau, European Communities, EUR19044EN, 32p.
Wang, G., Gertner, G., Fang, S., Anderson, A.B., 2003. Mapping multiple variables for predicting soil loss by geo- statistical methods with TM images and a slope map. Photogrametric Engineering Remote and Sensing 69, 889–898.
Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses. A guide to conservation planning. US Department of Agriculture, Agriculture Handbook, vol. 537, Washington DC, pp 85.
Yesuph, A. Y., Dagnew, A. B., 2019. Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environmental Systems Research 8, 17.
Youe-Qing, X., Xiao-Mei, S., Xiang-Bin, K., Jian, P., Yun-Long, C., 2008. Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China. Environmental Monitoring and Assessment 141,275–286.
Zeng, C., Wang, S., Bai, X., Li Y., Tian, Y., Li, Y., Wu, L., Luo, G., 2017. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth 8, 721–736, .
Zhang, Y. G., Nearing, M. A, Zhang, X. C., Xie , Y., Wei, H., 2010. Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China. Journal of Hydrology 384, 97–106.
Zouagui, A., Benmansour, M., Amenzou, N. et al., 2012. Application la technique de 137Cs à l’estimation de l’érosion hydrique dans le bassin versant de Moulay Bouchta, Rif occidental, Maroc. Revue Marocaine des Sciences Agronomiques et Vétérinaires 1, 53-58.