Selected properties of soils located within the depression cone of a planned excavation of the Drzewce open cast pit (central Poland)
More details
Hide details
Wydział Rolnictwa, Ogrodnictwa i Bioinżynierii, Katedra Gleboznawstwa i Ochrony Gruntów, Uniwersytet Przyrodniczy w Poznaniu, Polska
Submission date: 2021-05-04
Final revision date: 2021-08-04
Acceptance date: 2021-11-12
Online publication date: 2021-12-31
Publication date: 2021-12-31
Corresponding author
Piotr Gajewski   

Wydział Rolnictwa, Ogrodnictwa i Bioinżynierii, Katedra Gleboznawstwa i Ochrony Gruntów, Uniwersytet Przyrodniczy w Poznaniu, Szydłowska 50, 60-656, Poznań, Polska
Soil Sci. Ann., 2021, 72(3)143890
Open-pit lignite mining requires drainage of the deposit. The depression cone, formed as a result of these activities, has a varied surface and depth, and these features are shaped primarily by the geological structure and by the thickness of the caprock layer. In some of the areas covered by the depression cone, soil productivity may deteriorate, and a related yield reduction may occur, providing the basis for the payment of applied compensations for the owners of such areas. The aim of the study was to assess the condition of selected soils in the vicinity of the planned excavation (Field B) of the Drzewce lignite open pit mine (central Poland). Six profiles were excavated in organic and mineral-organic soils. The locations of the test points were chosen to represent soils that meet the criteria of habitats prone to drainage degradation. The morphological structure of the studied soils and their analysed properties indicate that they have already been drained (probably due to the influence of climate and cultivation), but does not exclude the possible acceleration and enhancement of this process by the commencement of mining activities. For most of the analysed features, a high correlation between their value and organic matter content was observed. Given that the possible commencement of opencast mining operations may significantly accelerate and enhance the already initiated mursh-forming process, it is reasonable to conduct systematic research at the measuring points proposed in the study.
Ajibola, Y. H., Oguntunde, P. G., Lawal, K., 2018. Land use effects on soil erodibility and hydraulic conductivity in Akure, Nigeria. African Journal of Agricultural Research 13(7), 329-337.
Alberski, J., Grzegorczyk, S., Pawluczuk, J., 2012. Warunki siedliskowe fitocenoz ze znaczącym udziałem Deschampsia caespitosa (L.) P. Beauv. w runi użytków zielonych Pojezierza Olsztyńskiego. Woda-Środowisko-Obszary Wiejskie 12, z. 3 (39), 7-15. (in Polish with English summary).
Baird, A. J., Waldron, S., 2003. Shallow horizontal groundwater flow in peatlands is reduced by bacteriogenic gas production. Geophysical Research Letters 30(20), 2043 pp.
Berglund, K., 2008. Torvmarken, en resurs i jordbruket igår, idag och även i morgon. In: Runefelt, L. (Ed.), Svensk mosskultur e Odling, torvanvändning och landskapets förändring. Enheten för de Areella Näringarnas Historia, KSLA, Eskilstuna, 483-498.
Berglund, O., Berglund, K., 2011. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biology and Biochemistry 43, 923–931.
Biemelt, D., Schapp, A., Grünewald, U., 2011. Hydrological observation and modelling relationship for the determination of water budget in Lusatian post-mining landscape. Physics and Chemistry of the Earth 36, 3–18.
Blake, G.R., Hartge, K.H., 1986. Particle density. In: Klute A. (Eds.) Methods of soil analysis. Part 1. 2nd ed. Agronomy Monograph 9 ASA and SSSA, Madison, Wi. 377-382.
Boelter, D.H., 1969. Physical properties of peats as related to degree of decomposition. Soil Science Society of America Journal 33, 606–609.
Bruland, G. L., C. J. Richardson., 2004. Hydrologic gradients and topsoil additions affect soil properties of Virginia created wetlands. Soil Science Society of America 68, 2069–2077.
Carey, S.K., Quinton, W., Goeller, N.T., 2007. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrological Processes 21, 2560– 2571.
Gajewski, P., Jakubus, M., Kaczmarek, Z., 2011. Właściwości fizyczne i wodne gleb hydrogenicznych w sąsiedztwie uruchamianej odkrywki węgla brunatnego „Tomisławice”. Roczniki Gleboznawcze – Soil Science Annual 62, 2, 86-94. (in Polish with English abstract).
Glina, B., Bogacz, A., Bojko, O., Kordyjarek, M., 2013. Zróżnicowanie gleb z obszaru torfowiska stokowego okolic Karłowa (Park Narodowy Gór Stołowych). Episteme 18 (3), 287-296. (in Polish with English abstract).
Glina, B., Gajewski, P., Kaczmarek, Z., Owczarzak, W., Rybczyński, P., 2016. Current state of peatland soils as an effect of long-term drainage – preliminary results of peatland ecosystems investigation in the Grójecka Valley (central Poland). Roczniki Gleboznawcze - Soil Science Annual 67(1), 3–9.
Glina., B., Gajewski, P., Mendyk, Ł., Zawieja, B., Kaczmarek, Z., 2019. Recent changes in soil properties and carbon stocks in fen peatlands adjacent to open-pit lignite mines. Land Degradation and Development, 30(18), 2371-2380.
Grimshaw, H.M., Allen, S.E., Parkinson, J.A., 1989. Chemical Analysis of Ecological Materials. 2nd. Blackwell Scientific Publications, London, 81 pp.
Gnatowski, T., Szatylowicz, J., Brandyk, T., Kechavarzi, C., 2010. Hydraulic properties of fen peat soils in Poland. Geoderma 154, 188–195.
Hoag, R.S, Price, J.S., 1997. The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns. Journal of Contaminant Hydrology 28, 193–205.
Holden, J., Evans, M., Burt, T., Horton, M., 2006. Impact of land drainage on peatland hydrology. Journal of Environmental Quality 35, 5, 1764–1778.
Holden, J., Wallage, Z.E., Lane, S.N., McDonald, A.T., 2011. Water table dynamics in undisturbed, drained and restored blanket peat. Journal of Hydrology 402, 103–114.
Ilnicki, P., 2002. Torfowiska i torf. Wyd. Akademii Rolniczej im. A. Cieszkowskiego, Poznań, 606 pp (in Polish).
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International Soil Classification System for Naming Soil and Creating Legends for Soil Maps. World Soil Resources Reports No. 106, FAO, Rome, 190pp.
Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O., Schad, P., 2006. Guidelines for soil description, FAO, Rome, 97 pp.
Kalisz, B., Łachacz, A, Głażewski, R., 2010. Transformation of some organic matter components in organic soils exposed to drainage. Turkish Journal of Agriculture and Forestry 34(3), 245–256.
Kalisz, B, Łachacz, A, Głażewski, R., 2015. Effects of peat drainage on labile organic and water repellency in NE Poland. Turkish Journal of Agriculture and Forestry 39, 20-27.
Kamiński, J., 2007. Rozwój zbiorowisk roślinnych na glebie torfowo-murszowej po zaniechaniu wieloletnich upraw polowych. Woda-Środowisko-Obszary Wiejskie 7, z.2a, (20), 173-189. (in Polish with English summary).
Kechavarzi, C., Dawson, Q., Leeds-Harrison, P.B., 2010. Physical properties of low-lying agriculture peat soils in England. Geoderma 154, 196-202.
Kellner, E., Halldin, S., 2002. Water budget and surface-layer water storage in a Sphagnum bog in central Sweden. Hydrological Processes 16, 87–103.
Kennedy, G.W., Price, J.S., 2005. A conceptual model of volume change controls on the hydrology of cutover peats. Journal of Hydrology 302, 13–27.
Kløve, B., 2000. Effect of peat harvesting on peat hydraulic properties and runoff generation. Suoseura 51(3), 121–129.
Klute, A., 1986. Water retention: laboratory methods. In: A. Klute (Eds.) Methods of soil analysis. Part 1. Physical and mineralogical methods. American Society of Agronomy–Soil Science Society of America, Madison, Wisc., 635–662.
Klute, A., Dirksen, C., 1986. Hydraulic conducticity and difusivity: laboratory methods. In: Klute A. (Eds.). Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. 2nd. Agronomy Monograph 9 ASA and SSSA, Madison, Wi. 687–734.
Kopp, B.J., Fleckenstein, J.H., Roulet, N.T., Humphreys, E., Talbot, J., Blodau, C., 2013. Impact of long-term drainage on summer groundwater flow patterns in the Mer Bleue peatland, Ontario, Canada. Hydrology and Earth System Sciences 17, 3485–3498.
Lipka, K., Zając, E., Hlotov, V., Siejka, Z., 2017. Disappearance rate of a peatland in Dublany near Lviv (Ukraine) drained in 19th century. Mires and Peat 19, 1-15.
Liu, H., Janssen, M., Lennartz, B., 2016. Changes in flow and transport patterns in fen peat following soil degradation. European Journal of Soil Science 67, 763–772.
Lorenz, K., Lal, R., Ehlers, K., 2019. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations' sustainable development goals. Land Degradation and Development 30, 824–838.
Michel, J.C., 2010. The physical properties of peat: a key factor for modern growing media. Mires and Peat 6 (2), 1-6.
Mocek A., Drzymała S., 2010. Geneza, analiza i klasyfikacja gleb. Wyd. UP Poznań, 418 pp, (in Polish).
Mocek, A., Owczarzak, W., Kaczmarek, Z., 2004. Evaluation criteria of the different soil degradation in the vicinity of workings of open cast lignite mines situated on the Central Polish Lowland. Acta Agrophysica 51, 131-142.
Montes-Pulido, C.R., Miras, J.J.R., Wery, A.M.S.J., 2017. Estimation of soil organic carbon (SOC) at different soil depths and soil use in the Sumapaz paramo, Cundinamarca-Colombia. Acta Agrnonómica 66 (1), 95–101.
Okruszko, H., 1971. Określenie ciężaru właściwego gleb hydrogenicznych na podstawie zawartości w nich części mineralnych. Wiadomości IMUZ 10 (1), 47-54 (in Polish).
Okruszko, H., 1981. Faza decesji w naturalnej ewolucji torfowisk niskich. Zeszyty Naukowe AR Wrocław. Rolnictwo 38 (134), 39–47. (in Polish).
Oleszczuk, R., Gnatowski, T., Brandyk, T., 2009. Wilgotność krytyczna gleb torfowych jako kryterium nieodwracalności procesu pęcznienia. Acta Agrophysica 14(2), 403-412. (in Polish with English abstract).
Oleszczuk, R., Zając, E., Hewelke, E., Wawer, K., 2018. Determination of water retention characteristics of organic soils, using the indirect filter–paper method. Acta Scientiarum Polonorum Formatio Circumiectus 17(2), 13–21.
Owczarzak, W., Mocek, A., Kaczmarek, Z., Gajewski, P., 2008. Ocena stopnia degradacji naturalnej i antropogenicznej gleb w obszarze odwadniającego oddziaływania odkrywki węgla brunatnego Drzewce. Roczniki Gleboznawcze – Soil Science Annual 59 (2), 177-190. (in Polish with English abstract).
Owczarzak, W., Mocek, A., Kaczmarek, Z., Gajewski, P., Glina B., 2017. Changes of soli water regime types in the area adjacent to the Tomisławice open-cast lignite mine (central Poland). Roczniki Gleboznawcze – Soil Science Annual 68(1), 39-45.
Owczarzak, W., Mocek, A., Kryszak, A., Kryszak, J., 2018. Uzupełniające badania gleboznawcze terenów wokół o/Drzewce – etap V (expertise of the Polish Society of Soil Science – unpublished material).
Panilas, S. Petalas, C.P, Gemitzi, A., 2008. The possible hydrologic effects of the proposed lignite open-cast mining in Drama lignite field, Greece. Hydrological Processes 22, 1604–1617.
Pawluczuk, J., Alberski, J., 2011. Warunki siedliskowe i roślinność użytków zielonych na glebach torfowo-murszowych z terenu Pojezierza Olsztyńskiego. Woda Środowisko Obszary Wiejskie 11, 3, 35, 183–195. (in Polish with English summary).
PTG., 2009. Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze – Soil Science Annual 60 (2), 5-16.
Quinton, W.L., Hayashi, M., Carey, S.K., 2008. Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrological Processes 22, 2829–2837.
Redding, T. E., Devito, K. J., 2006. Particle densities of wetland soils in northern Alberta, Canada. Canadian Journal of Soil Science 86, 57–60.
Rezanezhad, F., Price, J.S., Quinton, W.L., Lennartz, B., Milojevic, T. Van Cappellen, P., 2016. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology 429, 75–84.
Rezanezhad, F., Quinton, W.L., Price, J.S., Elliot, T.R., Elrick, D, Shook, K.R., 2010. Influence of pore size and geometry on peat unsaturated hydraulic conductivity computed from 3D computed tomography image analysis. Hydrological Processes 24(21), 2983–2994.
Rühlmann, J., Körschens, M., Graefe, J., 2006. A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix. Geoderma 130, 272– 283.
Rząsa, S., Owczarzak, W., Mocek, A., 1999. Problemy odwodnieniowej degradacji gleb uprawnych w rejonach kopalnictwa odkrywkowego na Niżu Środkowopolskim. Wydawnictwo Akademii Rolniczej w Poznaniu, 394 pp. (in Polish).
Sammel, A., Niedźwiecki, E., Meller, E., 2008. Właściwości fizyczne gleb murszastych Równiny Odrzańsko-Zalewowej. Roczniki Gleboznawcze - Soil Science Annual 59 (1), 192-197. (in Polish with English abstract).
Schindler, U., Behrendt, A., Muller, L., 2003. Change of soil hydrological properties of fens as a result of soil development. Journal of Plant Nutrition and Soil Science 166, 357–363.
Schwärzel, K., Renger, M., Sauerbrey, R., Wessolek, G., 2002. Soil physical characteristics of peat soils. Journal of Plant Nutrition and Soil Science 165, 479–486.
Soil Survey Division Staff, 1993. Soil survey manual, Soil Conservation Service. U.S. Department of Agriculture Handbook 18, D.C. Washington, 437 pp.
Spychalski, M., Kaźmierowski, C., Kaczmarek, Z., 2007. Estimation of saturated hydraulic conductivity on the basis of drainage porosity. Electronic Journal of Polish Agriculture University 10, Issue 1.
Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław-Warszawa, 250 pp. (in Polish).
Turbiak, J., Miatkowski, Z., 2016. Z. Ocena tempa mineralizacji masy organicznej w głęboko odwodnionej glebie torfowo-murszowej na podstawie ubytków masy gleby oraz emisji CO2 Woda-Środowisko-Obszary Wiejskie 16, z.3(55), 73-85. (in Polish with English summary).
Uzarowicz, Ł., Szafranek, A., Kurbiel, M., 2014. Problemy gleboznawczej klasyfikacji bonitacyjnej gruntów rolnych w zasięgu oddziaływania leja depresyjnego KWB „Bełchatów” Roczniki Gleboznawcze - Soil Science Annual 65(4), 170–179. (in Polish with English abstract)
Wallage, Z.E., Holden, J., 2011. Near-surface macropore flow and saturated hydraulic conductivity in drained and restored blanket peatlands. Soil Use and Management 27, 247–254.
Wallor, E., Rosskopf, N., Zeitz, J., 2018. Hydraulic properties of drained and cultivated fen soils part I—Horizon‐based evaluation of van Genuchten parameters considering the state of moorsh‐forming process. Geoderma 313(1), 69–81.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin‐Spiotta, E., Kögel‐Knabner, I., 2019. Soil organic carbon storage as a key function of soils ‐ A review of drivers and indicators at various scales. Geoderma 333, 149–162.
Zając, E., Zarzycki, J., Ryczek, M., 2018. Degradation of peat surface on an abandoned post-extracted bog and implications for re-vegetation. Applied Ecology and Environmental Research 16(3), 3363-3380.
Zeitz, J., Velty, S., 2002. Soil properties of drained and rewetted fen soils. Journal of Plant Nutrition and Soil Science 165(5), 618–626.
Zhang, Y., Schaap, M.G., 2019. Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. Journal of Hydrology 575, 1011-1030.
Zongping, R., Liangjun, Z., Bing, W., Shengdong, C., 2016. Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau, China. Journal of Arid Land 8(4), 546-555.
Journals System - logo
Scroll to top