PL EN
ORIGINAL PAPER
Effects of soil management practices on the abundance, biomass and diversity of soil macrofauna in the province of Berkane, NE Morocco
 
More details
Hide details
1
, Morocco
 
 
Submission date: 2025-02-13
 
 
Final revision date: 2025-05-30
 
 
Acceptance date: 2025-07-01
 
 
Online publication date: 2025-07-01
 
 
Publication date: 2025-07-01
 
 
Corresponding author
Mourad Bendada   

Faculty of Sciences, Department of biology, Mohammed First University, 60000, Oujda, Morocco
 
 
Soil Sci. Ann., 2025, 76(3)207764
 
KEYWORDS
ABSTRACT
The agrobiodiversity in the province of Berkane along the Triffa plain of the NE region of Morocco represents an area characterized by a high diversity of ecosystems that are affected by intense agricultural activities. Therefore, it is essential to study the different agricultural practices that contribute to its protection and preservation. However, no biological measurements are currently being carried out in this region. Between February and April 2023, a set of 30 soil sampling sites was established in six sugar beet fields from two agricultural systems to evaluate the effects of soil management practices on soil macrofaunal communities, litter and soil properties in a Beta vulgaris L. (sugar beet) field in Berkane. In this study, the transition from conventional to organic cultivation has a positive effect on the macrofauna communities, which also contributed to changes in soil edaphic properties. For example, the abundance of macrofauna, was greater in the organic system (780 ± 190 individuals · m−2) than in the conventional farming system (296 ± 69 individuals · m−2). Additionally, the biomass of soil macrofauna increased almost twofold during the transition to the organic farming system. However, the diversity was similar between the two different agricultural systems, with a slight increase in specific richness in the organic farming system compared with that in the other conventional farming system. We assume that the feedback of soil macrofauna to farming systems could be due to the indirect impact of pesticides via changes in habitat conditions.
REFERENCES (71)
1.
Ali, A., Lin, S.L., He, J.K., Kong, F.M., Yu, J.H., Jiang, H.S., 2019. Tree crown complementarity links positive functional diversity and aboveground biomass along large-scale ecological gradients in tropical forests. Science of The Total Environment 656, 45–54. https://doi.org/10.1016/j.scit....
 
2.
Anderson, J.M., Ingram, J.S., 1994. Tropical soil biology and fertility: a handbook of methods 157. Soil Science.
 
3.
Bartz, M.L.C., Pasini, A., Brown, G.G., 2013. Earthworms as soil quality indicators in Brazilian no-tillage systems. Applied Soil Ecology 69, 39–48. https://doi.org/10.1016/j.apso....
 
4.
Begum, F., Bajracharya, R.M., Sitaula, B.K., Sharma, S., 2013. Seasonal dynamics, slope aspect and land use effects on soil mesofauna density in the mid-hills of Nepal. International Journal of Biodiversity Science, Ecosystem Services & Management 9(4), 290–297. https://doi.org/10.1080/215137....
 
5.
Bengtsson, J., Ahnström, J., Weibull, A.C., 2005. The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. Journal of Applied Ecology 42(2), 261–269. https://doi.org/10.1111/j.1365....
 
6.
Bouché, M.B., 1972. Lombriciens de France. Écologie et Systématique (Vol. 72). Annales de Zoologie et Écologie animale. Publications INRA.
 
7.
Chapman, H.D., 2016. Cation-Exchange Capacity, 891–901. https://doi.org/10.2134/agronm....
 
8.
Cole, L., Bradford, M.A., Shaw, P.J.A., Bardgett, R.D., 2006. The abundance, richness and functional role of soil meso- and macrofauna in temperate grassland-A case study. Applied Soil Ecology 33(2), 186–198. https://doi.org/10.1016/j.apso....
 
9.
Correia, F.V., Moreira, J.C., 2010. Effects of Glyphosate and 2,4-D on Earthworms (Eisenia foetida) in Laboratory Tests. Bulletin of Environmental Contamination and Toxicology 85(3), 264–268. https://doi.org/10.1007/s00128....
 
10.
Coulis, M., 2021. Abundance, biomass and community composition of soil saprophagous macrofauna in conventional and organic sugarcane fields. Applied Soil Ecology 164, https://doi.org/10.1016/j.apso....
 
11.
Cuendet, G., 2001. Identification des lombriciens de Suisse.
 
12.
da Silva Souza, T., Christofoletti, C.A., Bozzatto, V., Fontanetti, C.S., 2014. The use of diplopods in soil ecotoxicology – A review. Ecotoxicology and Environmental Safety 103, 68–73. https://doi.org/10.1016/j.ecoe....
 
13.
Dohm, J.C., Minoche, A.E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., Rupp, O., Sörensen, T.R., Stracke, R., Reinhardt, R., Goesmann, A., Kraft, T., Schulz, B., Stadler, P. F., Schmidt, T., Gabaldón, T., Lehrach, H., Weisshaar, B., Himmelbauer, H., 2014. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505(7484), 546–549. https://doi.org/10.1038/nature....
 
14.
DP Schwert., 1990. Oligochaeta: Lumbricidae. Soil Biology Guide 1, 341–356.
 
15.
Edwards, C.A., Arancon, N.Q., 2022. Biology and Ecology of Earthworms. Springer US. https://doi.org/10.1007/978-0-....
 
16.
 
17.
Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M. T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N., Snyder, P.K., 2005. Global Consequences of Land Use. Science 309(5734), 570–574. https://doi.org/10.1126/scienc....
 
18.
Fox, C.J.S., 1964. The effects of five herbicides on the numbers of certain invertebrate animals in grassland soil. Canadian Journal of Plant Science 44(5), 405–409. https://doi.org/10.4141/cjps64....
 
19.
Fragoso, C., Brown, G.G., Patrón, J.C., Blanchart, E., Lavelle, P., Pashanasi, B., Senapati, B., Kumar, T., 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Applied Soil Ecology 6(1), 17–35. https://doi.org/10.1016/S0929-....
 
20.
Frouz, J., 2013. The Role of Soil Macrofauna in Soil Formation and Carbon Storage in Post-mining Sites. In Soil Biota and Ecosystem Development in Post Mining Sites, CRC Press, 236–250.
 
21.
Frouz, J., Kalčík, J., Velichová, V., 2011. Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site. Ecological Engineering 37(11), 1910–1913. https://doi.org/10.1016/j.ecol....
 
22.
Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalčík, J., Řehounková, K., 2008. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology 44(1), 109–121. https://doi.org/10.1016/j.ejso....
 
23.
Giller, K.E., Beare, M.H., Lavelle, P., Izac, A.M.N., Swift, M.J., 1997. Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology 6(1), 3–16. https://doi.org/10.1016/S0929-....
 
24.
Hassan, S.A., Bigler, F., Bogenschütz, H., Boller, E., Brun, J., Calis, J.N.M., Coremans-Pelseneer, J., Duso, C., Grove, A., Heimbach, U., Helyer, N., Hokkanen, H., Lewis, G.B., Mansour, F., Moreth, L., Polgar, L., Samsøe-Petersen, L., Sauphanor, B., Stäubli, A., … Vogt, H., 1994. Results of the sixth joint pesticide testing programme of the IOBC/WPRS-working group «pesticides and beneficial organisms». Entomophaga 39(1), 107–119. https://doi.org/10.1007/BF0237....
 
25.
Heinze, S., Raupp, J., Joergensen, R.G., 2010. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant and Soil 328(1–2), 203–215. https://doi.org/10.1007/s11104....
 
26.
Henneron, L., Bernard, L., Hedde, M., Pelosi, C., Villenave, C., Chenu, C., Bertrand, M., Girardin, C., Blanchart, E., 2015a. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agronomy for Sustainable Development 35(1), 169–181. https://doi.org/10.1007/s13593....
 
27.
Hoffmann A., 1950. Faune de France : Coléoptères Curculionides (Première Partie).
 
28.
Hoffmann A.,1958. Faune de France : Coléoptères Curculionides (Troisième Partie).
 
29.
Hole, D.G., Perkins, A.J., Wilson, J.D., Alexander, I.H., Grice, P.V., Evans, A.D., 2005. Does organic farming benefit biodiversity? Biological Conservation 122(1), 113–130. https://doi.org/10.1016/j.bioc....
 
30.
Ibrahim, A.A.S., 1984. Weed competition and control in sugarcane. Weed Research 24(4), 227–231. https://doi.org/10.1111/j.1365....
 
31.
Jamieson, B.G.M., 1988. On the phylogeny and higher classification of the oligochaeta. Cladistics 4(4), 367–401. https://doi.org/10.1111/j.1096....
 
32.
Jiménez-Carmona, F., Heredia-Arévalo, A.M., Reyes-López, J.L., 2020. Ants (Hymenoptera: Formicidae) as an indicator group of human environmental impact in the riparian forests of the Guadalquivir River (Andalusia, Spain). Ecological Indicators 118, 106762. https://doi.org/10.1016/j.ecol....
 
33.
Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P., Lepage, M., 2006. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology 32(2), 153–164. https://doi.org/10.1016/j.apso....
 
34.
Kerney, M.P., Cameron, R.A.D., Jungbluth, J.H., 1983. Die Landschnecken Nord- und Mitteleuropas. Paul Parey.
 
35.
Kortenkamp, A., Backhaus, T., Faust, M., 2009. State of the art report on mixture toxicity.
 
36.
Lavelle, P., 1996. Diversity of soil fauna and ecosystem function. Biology International 33, 3–16.
 
37.
Lavelle, P., Blanchart, E., Martin, A., Martin, S., Spain, A., 1993. A Hierarchical Model for Decomposition in Terrestrial Ecosystems: Application to Soils of the Humid Tropics. Biotropica 25(2), 130. https://doi.org/10.2307/238917....
 
38.
Lavelle, P., Charpentier, F., Villenave, C., Rossi, J.P., Derouard, L., Pashanasi, B., André, J., Ponge, J.F., Bernier, N., 2004. Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. Earthworm ecology, CRC Press, Boca Raton, Florida.
 
39.
Lavelle, P., Gilot, C., Fragoso, C., Pashanasi, B., 1994. Soil fauna and sustainable land use in the humid tropics, CAB International, 291–308.
 
40.
Marina, T.I., Saravia, L.A., Cordone, G., Salinas, V., Doyle, S.R., Momo, F.R., 2018. Architecture of marine food webs: To be or not be a small-world. PLOS ONE 13(5). https://doi.org/10.1371/journa....
 
41.
Mathieu, C., Pieltain, F., Jeanroy, E., 2003. Analyse Chimique des Sols : Méthodes Choisies , Tec & Doc/Lavoisier).
 
42.
Nachimuthu, G., Halpin, N.V., Bell, M.J., 2016. Effect of sugarcane cropping systems on herbicide losses in surface runoff. Science of The Total Environment, 773–784. https://doi.org/10.1016/j.scit....
 
43.
Niemeyer, J.C., Lolata, G.B., Carvalho, G.M. de, Da Silva, E.M., Sousa, J.P., Nogueira, M.A., 2012. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Applied Soil Ecology 59, 96–105. https://doi.org/10.1016/j.apso....
 
44.
Olsen, S.R., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture, 939.
 
45.
Paoletti, M.G., Schweigl, U., Favretto, M.R., 1995. Soil macroinvertebrates, heavy metals and organochlorines in low and high input apple orchards and a coppiced woodland. Pedobiologia 39(1), 20–33. https://doi.org/10.1016/S0031-....
 
46.
Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., Vandenbulcke, F., 2014. Pesticides and earthworms. A review. Agronomy for Sustainable Development 34(1), 199–228. https://doi.org/10.1007/s13593....
 
47.
Pielou, E.C., 1969. An introduction to mathematical ecology. New York, USA, Wiley-Inter-science.
 
48.
Relyea, R.A., 2009. A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159(2), 363–376. https://doi.org/10.1007/s00442....
 
49.
Reynolds, J.W., 1977. The earthworms (lumbricidae and sparganophilidae) of Ontario. Royal Ontario Museum. https://doi.org/10.5962/bhl.ti....
 
50.
Ristok, C., Leppert, K.N., Scherer-Lorenzen, M., Niklaus, P.A., Bruelheide, H., 2019. Soil macrofauna and leaf functional traits drive the decomposition of secondary metabolites in leaf litter. Soil Biology and Biochemistry 135, 429–437. https://doi.org/10.1016/j.soil....
 
51.
Roubíčková, A., Mudrák, O., Frouz, J., 2009. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biology and Fertility of Soils 45(7), 769–774. https://doi.org/10.1007/s00374....
 
52.
Rousseau, L., Fonte, S.J., Téllez, O., van der Hoek, R., Lavelle, P., 2013. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological Indicators 27, 71–82. https://doi.org/10.1016/j.ecol....
 
53.
Shannon, C.E., 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27(3), 379–423. https://doi.org/10.1002/j.1538....
 
54.
Shultz, B.J., Lensing, J.R., Wise, D.H., 2006. Effects of altered precipitation and wolf spiders on the density and activity of forest-floor Collembola. Pedobiologia 50(1), 43–50. https://doi.org/10.1016/j.pedo....
 
55.
Siepel, H., 1996. Biodiversity of soil microarthropods: the filtering of species. Biodiversity and Conservation 5(2), 251–260. https://doi.org/10.1007/BF0005....
 
56.
Sims, R.W., Gerard, B.M., 1985. Earthworms. BRILL. https://doi.org/10.1163/978900....
 
57.
Souza, J.L.P. de, Baccaro, F.B., Landeiro, V.L., Franklin, E., Magnusson, W.E., 2012. Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Applied Soil Ecology 56, 63–73. https://doi.org/10.1016/j.apso....
 
58.
Suárez, L.R., Pinto, S.P.C., Salazar, J.C.S., 2019. Soil Macrofauna and Edaphic Properties in Coffee Production Systems in Southern Colombia. Floresta e Ambiente 26(3). https://doi.org/10.1590/2179-8....
 
59.
Suntoro, S., Hikmah, F., Mujiyo, M., Syamsiyah, J., 2024. The distribution of soil fertility index and its interaction with earthworms density under organic, semi-organic, and inorganic rice fields. Soil Science Annual 74(4), 1–15. https://doi.org/10.37501/soils....
 
60.
Tempère, G., Péricart, J., 1989). Faune de France : Coléoptères Curculionidae (Quatrième partie : compléments aux trois volumes d’Adolphe Hoffmann. Corrections, Additions et Répertoire (avec la collaboration de Roman Borovec). Fédération française des sociétés de sciences naturelles.
 
61.
Tscharntke, T., Steffan-Dewenter, I., Kruess, A., Thies, C., 2002. Contribution of Small Habitat Fragments to Conservation of Insect Communities of Grassland-Cropland Landscapes. Ecological Applications 12(2), 354. https://doi.org/10.2307/306094....
 
62.
Ugarte, C.M., Zaborski, E.R., Wander, M.M., 2013. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biology and Biochemistry 64, 103–113. https://doi.org/10.1016/j.soil....
 
63.
Uvarov, A.V., Tiunov, A.V., Scheu, S., 2011. Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil. Soil Biology and Biochemistry 43(3), 559–570. https://doi.org/10.1016/j.soil....
 
64.
van Eekeren, N., Bommelé, L., Bloem, J., Schouten, T., Rutgers, M., de Goede, R., Reheul, D., Brussaard, L., 2008. Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Applied Soil Ecology 40(3), 432–446. https://doi.org/10.1016/j.apso....
 
65.
Vandel, A., 1960. Faune de France. Isopodes terrestres. (1ère partie). Lechevalier.
 
66.
Vandel, A.,1962. Faune de France. Isopodes terrestres. (2ème partie). Lechevalier.
 
67.
Walkley, A., Black, I.A., 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1), 29–38. https://doi.org/10.1097/000106....
 
68.
Wolters, V., Ekschmitt, K., 1997. Gastropods, isopods, diplopods, and chilopods: neglected groups of the decomposer food web. In Fauna in Soil Ecosystems: Recycling Processes, Nutrient Fluxes, and Agricultural Production, Marcel Dekker, 265–306.
 
69.
Yang, X., Shao, M., Li, T., Gan, M., Chen, M., 2021. Community characteristics and distribution patterns of soil fauna after vegetation restoration in the northern Loess Plateau. Ecological Indicators 122, 107236. https://doi.org/10.1016/j.ecol....
 
70.
Yin, X., Ma, C., He, H., Wang, Z., Li, X., Fu, G., Liu, J., Zheng, Y., 2018. Distribution and diversity patterns of soil fauna in different salinization habitats of Songnen Grasslands, China. Applied Soil Ecology 123, 375–383. https://doi.org/10.1016/j.apso....
 
71.
Zhang, W., Yuan, S., Hu, N., Lou, Y., Wang, S., 2015. Predicting soil fauna effect on plant litter decomposition by using boosted regression trees. Soil Biology and Biochemistry 82, 81–86. https://doi.org/10.1016/j.soil....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top