Human activity in the surroundings of a former mill pond (Turznice, N Poland): implications for soil classification and environmental hazard assessment
More details
Hide details
Faculty of Agronomy and Bioengineereing, Department of Soil Science and Land Protection, Poznań University of Life Sciences, Polska
Faculty of Earth Sciences and Spatial Management, Department of Soil Science and Landscape Management, Nicolaus Copernicus University in Toruń, Polska
Faculty of Environmental Management and Agriculture, Department of Soil Science and Land Reclamation, University of Warmia and Mazury in Olsztyn, Polska
Submission date: 2020-09-01
Final revision date: 2020-11-25
Acceptance date: 2020-12-11
Online publication date: 2021-02-10
Publication date: 2021-02-10
Corresponding author
Łukasz Mendyk   

Faculty of Agronomy and Bioengineereing, Department of Soil Science and Land Protection, Poznań University of Life Sciences, Szydłowska St. 50, 60-656, Poznań, Polska
Soil Sci. Ann., 2020, 71(4), 371-381
Growing human impact on the environment, including soil, is being reflected in the evolution of soil classification systems, which include adjustments to enable the proper and complex classification of anthropogenic soils. An example of human-changed landscapes is molinotopes, where soils and other landscape elements were altered due to the construction and operation of water mills. Four soil profiles were selected in the immediate surroundings of a former mill pond in Turznice village (the Grudziądz Basin, N Poland), where specific anthropogenic soils were formed. The aims of the study were: 1) to determine the systematic position of the studied soils in relation to their human-impacted genesis, and 2) to assess the status of pollution by toxic metals including Cd, Cr, Cu, Ni, Pb and Zn. Profiles 1, 2 and 3 were formed under undisputedly strong human influence, as revealed by their morphological features (i.e. artefacts, clear and abrupt horizon boundaries), basic properties (irregular changes of TOC not connected with natural soil-forming processes), selected heavy-metal contents and values of applied pollution index (enrichment with heavy metals in samples collected from horizons developed due to human activity). These profiles were classified as aggerosols (newly introduced soil type within the order of technogenic soils) according to PSC (2019) or Phaeozems (profiles 1 and 2) and Arenosol (profile 3). While the systematic position of these pedons according to PSC (2019) is a direct result of their anthropogenic genesis, only the Relocatic qualifier indicates such an influence according to WRB (IUSS, 2015). Profile 4, representing quasi-natural pedon in the vicinity of the former mill pond, was classified as arenosol) according to PSC (2019) and as Phaeozem according to WRB (IUSS, 2015). In regards to both national and international regulations, the collected soil samples are considered to be unpolluted by the studied heavy metals. The obtained results expand our knowledge of the soil cover evolution induced with human activities around former mill ponds and could be useful in the complex assessment of landscape classification.
Beroigui, M., Naylo, A., Walczak, M., Hafidi, M., Charzyński, P., Świtoniak, M., Różański, Sz., Boularbah, A., 2020. Physicochemical and microbial properties of urban park soils of the cities of Marrakech, Morocco and Toruń, Poland: Human health risk assessment of fecal coliforms and trace elements. CATENA 194, 104673.
Bishop, P., & Muñoz-Salinas, E., 2013. Tectonics, geomorphology and water mill location in Scotland, and the potential impacts of mill dam failure. Applied Geography 42, 195–205.
Brown, A. G. et al., 2016. The geomorphology of the Anthropocene: emergence, status and implications. Earth Surface Processes and Landforms 42(1), 71–90.
Brown, A. G., Lespez, L., Sear, D. A., Macaire, J. J., Houben, P., Klimek, K., Brazier, R. E., Van Oost, K., Pears, B., 2018. Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Science Reviews, 180, 185–205.
Brykała, D., Podgórski, Z., 2020. Evolution of landscapes influenced by watermills, based on examples from Northern Poland. Landscape and Urban Planning 198(2020), 103798.
Carlon, C., D’Alessandro, M., Swartjes, F., 2007. Derivation methods of soil screening values in Europe: a review of national procedures towards harmonisation. Office for Official Publications of the European Communities EUR-OP. Scientific and Technical Research Series.
Charzyński, P., Bednarek, R., Hudańska, P., Świtoniak, M., 2018. Issues related to classification of garden soils from the urban area of Toruń, Poland. Soil Science and Plant Nutrition 64(2), 132–1137.
Crutzen, P. J., 2006. The “Anthropocene”. [In:] Ehlers, E., Krafft., T. (Eds.), Earth system science in the Anthropocene. Springer, Berlin, Heidelberg, 13–18.
Egelie, G. C. M., 1977. Mills and living nature. Transactions of the 4th Symposium The International Molinological Society, TIMS, Maltock, England, 41–53.
Elias, P., Gbadegesin, A., 2011. Spatial relationships of urban land use, soils and heavy metal concentrations in Lagos Mainland Area. Journal of Applied Sciences and Environmental Management 15, 391–399.
Fajer, M., Rzetala, M. A., 2017. Mill pond sediments as the indicator of the environment of the drainage area (an example of Liswarta River, Odra basin, Poland). Environmental Science and Pollution Research 25(6), 5832–5847.
Galbraith, J. M., 2018. Human-altered and human-transported (HAHT) soils in the US soil classification system. Soil Science and Plant Nutrition 64(2), 190–199.
Gałuszka, A., Migaszewski, Z. M., 2011. Geochemical background—an environmental perspective. Mineralogia 42(1), 7–17.
Howard, J. L., Daniels, W. L., 2017. Soils of Urban and Human‐Impacted Landscapes. International Encyclopedia of Geography: People, the Earth, Environment and Technology 1–11.
Hulisz, P., Michalski, A., Dąbrowski, M., Kusza, G., Łęczyński, L., 2015. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut (northern Poland). Soil Science Annual 66(2), 67–74.
Hulisz, P., Charzyński, P., Greinert, A., 2018a. Urban soil resources of medium-sized cities in Poland: a comparative case study of Toruń and Zielona Góra. Journal of Soils and Sediments 18, 358–372.
Hupp, C. R., Noe, G. B., Schenk, E. R., Benthem, A. J., 2013. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream. Geomorphology 180–181(1), 156–169.
IUSS Working Group WRB, 2015. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report No. 106. FAO, Rome.
Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O., Schad, P., 2006. Guidelines for soil description. FAO.
Jankowski, M., Bednarek, R., Jaworska, M., 2013. Soils constructed on the 19th century fortifications in Toruń. [In:] Charzyński, P., Hulisz, P., Bednarek, R., (Eds.), Technogenic soils of Poland. Polish Society of Soil Science, Toruń.
Jonczak, J., Florek, W., 2013. Wiek i właściwości gleb wykształconych z osadów stawu młyńskiego w dolinie Jarosławianki (Równina Sławieńska). [In:] (Jonczak J., Florek W., Eds.) Środowisko glebotwórcze i gleby dolin rzecznych. Bogucki Wydawnictwo Naukowe, Poznań-Słupsk, 33–40.
Jonczak, J., 2015. Buffering properties of the soils developed from mill-pond deposits in the valley of the Jarosławianka Creek. Baltic Coastal Zone. Journal of Ecology and Protection of the Coastline 19, 37–48.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. ssa-2019-0009.
Kabata-Pendias, A., Szteke B., 2012. Pierwiastki śladowe w geo- i biosferze. Instytut Uprawy, Nawożenia i Gleboznawstwa. Państwowy Instytut Badawczy. Puławy.
Kaiser, K. et al., 2018. A large-scale medieval dam-lake cascade in central Europe: Water level dynamics of the Havel River, Berlin-Brandenburg region, Germany. Geoarchaeology 33(2), 237–259.
Kaiser, K. et al., 2020. Palaeosols and their cover sediments of a glacial landscape in northern central Europe: Spatial distribution, pedostratigraphy and evidence on landscape evolution. Catena 193, 104647.
Kittel, P. et al., 2014. A multi-proxy reconstruction from Lutomiersk–Koziówki, Central Poland, in the context of early modern hemp and flax processing. Journal of Archaeological Science 50, 318–337.
Kobierski, 2015. Evaluation of the content of heavy metals in Fluvisols of floodplain area depending on the type of land use. Journal of Ecological Engineering 16(1), 23-31.
Kot R., 2018. Mezoregiony fizycznogeograficzne (2018) 1:1 000 000. Internetowy Atlas Województwa Kujawsko-Pomorskiego. http://atlas.kujawsko-pomorski...# [10 August 2020].
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15(3), 259–263.
Kowalska, J., Mazurek, R., Gąsiorek, M., Zaleski, T., 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – A review. Environmental Geochemistry and Health 40, 2395–2420.
Krupski, M., Kabala, C., Sady, A., Gliński, R., Wojcieszak, J., 2017. Double- and triple-depth digging and Anthrosol formation in a medieval and modern-era city (Wrocław, SW Poland). Geoarchaeological research on past horticultural practices. Catena 153, 9–20.
Laurance, W. F., 2019. The Anthropocene. Current Biology, 29 (19), R953-R954.
Łabaz, B., Kabala, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126.
Madry, S., Jones, E. A., Tickner, A., Murray, S., Misner, T., 2015. Water and landscape dynamics in southern Burgundy: Two and a half centuries of water management in an agricultural landscape. Water History 7(3), 301–335. s12685-015-0132-z.
Matuszkiewicz, J. M., 2008. Potential natural vegetation of Poland (Potencjalna roślinność naturalna Polski), Map sheet B2. IGiPZ PAN, Warszawa.
Matschullat, J., Ottenstein, R., & Reimann, C., 2000. Geochemical background—Can we calculate it? Environmental Geology 39, 990–1000.
Marcinek, J., Spychalski, M., 1987. Wpływ zawartości materii organicznej na fizyczne właściwości gleb hydromorficznych. Roczniki Akademii Rolniczej w Poznaniu. Melioracje 7, 19–33.
Mendyk, Ł., Świtoniak, M., Bednarek, R., Falkowski, A., 2015. Genesis and classification of the soils developed from the sediments of the former Oleszek mill pond basin (the Chełmińskie Lakeland, N Poland)/Geneza i pozycja systematyczna gleb wykształconych z osadów niecki dawnego stawu młyńskiego Oleszek (Pojezierze Chełmińskie). Soil Science Annual 66(1), 29–35.
Mendyk, Ł., Hulisz, P., Kusza, G., Świtoniak, M., Gersztyn, L., Kalisz, B., 2016. Sediment origin and pedogenesis in the former mill pond basin of Turznice (north-central Poland) based on magnetic susceptibility measurements. Bulletin of Geography. Physical Geography Series 11(1), 55–69.
Ministry of the Environment, Finland, 2007. Government Decree on the Assessment of Soil Contamination and Remediation Needs. 214/2007 (March 1, 2007).
Pardela, Ł., Kowalczyk, T., Bogacz, A., Kasowska, D., 2020. Sustainable Green Roof Ecosystems: 100 Years of Functioning on Fortifications—A Case Study. Sustainability 12(11), 4721.
Podgórski, Z., 2004. Wpływ budowy i funkcjonowania młynów wodnych na rzeźbę terenu i wody powierzchniowe Pojezierza Chełmińskiego i przyległych części dolin Wisły i Drwęcy. Wyd. Nauk. UMK, Toruń.
Polish Soil Classification, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa.
Regulation ME, 2016. Regulation of the Minister of the Environment of September 1, 2016 on how to assess the pollution of the land surface
Ripin, S. N. M., Hasan, S., Kamal, M. L., Hashim, N. M., 2014. Analysis and pollution assessment of heavy metal in soil, Perlis. The Malaysian Journal of Analytical Sciences 18, 155–161.
Royall, D., Kennedy, L., 2016. Historical erosion and sedimentation in two small watersheds of the southern Blue Ridge Mountains, North Carolina, USA. Catena 143, 174–186.
Soil Survey Division Staff, 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook, 18.
Sutherland, R. A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology 39, 611–627.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116, 173–184.
Świtoniak, M., 2015. Issues relating to classification of colluvial soils in young morainic areas (Chełmno and Brodnica Lake District, northern Poland). Soil Science Annual 66(2), 57–66.
Tóth, G., Hermann, T., Szatmári, G., Pásztor, L., 2016. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the total environment 565, 1054–1062.
UNEP, 2013. Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles. [In:] van der Voet, E., Salminen, R., Eckelman, M., Mudd, G., Norgate, T., Hischier, R. (Eds.), A Report of the Working Group on the Global Metal Flows to the International Resource Panel.
Waters, C. N. et al., 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351, 6269.
Wójcik, G., Marciniak, K., 1987. Thermal conditions in central part of the North Poland in the years 1951–1970. Acta Universitatis Nicolai Copernici Geografia 20, 29–50 (in Polish).
Wójcik, G., Marciniak, K., 1993. Precipitations in Lower Vistula Valley in the years 1951–1980. [In:] Churski, Z. (Ed.), Environmental and Socio-economic Development of the Lower Vistula Valley. IG UMK, Toruń, 107–121.
Journals System - logo
Scroll to top