PL EN
ORIGINAL PAPER
Post-fire peatlands conditions based on soil resistivity and physical properties in Balangan County, Indonesia
 
More details
Hide details
1
Department of Physics, University of Lambung Mangkurat, Indonesia
 
2
Department of Soil Sciences, University of Lambung Mangkurat, Indonesia
 
3
Department of Chemical Engineering, University of Lambung Mangkurat, Indonesia
 
4
Department of Forestry, University of Lambung Mangkurat, Indonesia
 
 
Submission date: 2024-06-25
 
 
Final revision date: 2024-08-02
 
 
Acceptance date: 2024-11-11
 
 
Online publication date: 2024-11-11
 
 
Publication date: 2024-11-11
 
 
Corresponding author
Ahmad Kurnain   

Department of Soil Sciences, University of Lambung Mangkurat, A. Yani Km. 36, 70714, Banjarbaru, Indonesia
 
 
Soil Sci. Ann., 2024, 75(4)195821
 
KEYWORDS
ABSTRACT
Tropical peatlands are formed by the accumulation of organic matter under waterlogged conditions for thousands of years. Tropical peatlands are ecosystems that play an important role in global carbon storage and cycling. However, peatfires lead to a decline and insufficient soil quality. This study examines post-fires soil condition based on soil resistivity and physical properties in the peatland areas that burned in 2015 and reoccurred in 2019. This study was conducted in the peat hydrological unit of the Balangan River - Batangalai River in Balangan County, Indonesia. The study area included natural areas with no fires, areas burned in 2015, areas burned in 2019, and areas burned in 2015 and reoccurred in 2019. Field measurements of soil resistivity using the Wenner configuration geoelectric method with the smallest spacing of 10 cm to n = 12. The physical properties test of soil samples includes Bulk Density (BD), water content, fibre content, ash content and pH. This study was conducted during the dry season, so the condition of the area that experienced fires in 2015 and repeated in 2019 had only peat decomposition up to 10.0 cm thick, and the underlying layer was still bedrock. This research shows that the results of the physical and electrical properties of the soil indicate that the peatland that was burned in 2015 exhibited a recovery rate for eight years that was nearly identical to that of the unburned peatland. The peatland that was burned in 2019 and the peatland that was burned in 2015 and re-burned in 2019 exhibited a low recovery rate in comparison to the unburned peatland.
REFERENCES (84)
1.
Afriyanti, D., Kroeze, C., Saad, A. 2016. Indonesia palm oil production without deforestation and peat conversion by 2050. Science of the Total Environment 557–558, 562–570. https://doi.org/10.1016/j.scit....
 
2.
Agus, C., Azmi, F.F., Widiyatno, Ilfana, Z.R. Wulandari, D., Rachmanadi, D., Harun, M.K., Yuwati, T.W., 2019. The Impact of Forest Fire on the Biodiversity and the Soil Characteristics of Tropical Peatland. Climate Change Management. Springer International Publishing. https://doi.org/10.1007/978-3-....
 
3.
Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X. 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment 613–614, 944–957. https:// doi.org/10.1016/j.scitotenv.2017.09.144.
 
4.
Anshari, G., 2010. A preliminary assessment of peat degradation in West Kalimantan. Biogeosciences Discuss 7, 3503–3520. https://doi.org/10.5194/bgd-7-....
 
5.
Antille, D., Macdonald, B., Webb, M., 2015. Determination of bulk density of soil. Tralian Centre for International Agricultural Research 1–9. http://doi.wiley.com/10.1002.
 
6.
Arief P.H., 2023. Kepala BMKG Kalsel: kemarau Kalsel tahun 2023 berbeda dengan tahun sebelumnya. Media Center - Portal Berita Kalimantan Selatan. https://diskominfomc. kalselprov.go.id/2023/09/06/.
 
7.
Arisanty, D., Jędrasiak, K., Rajiani, I., Grabara, J., 2020. The destructive impact of burned peatlands to physical and chemical properties of soil. Acta Montanistica Slovaca 25(2), 213–223. https://doi.org/10.46544/AMS.v....
 
8.
ASTM D 1997-20, 2020. Standard Test Method for Laboratory Determination of the Fiber Content of Peat and Organic Soils by Dry Mass. https://doi.org/10.1520/D1997-....
 
9.
ASTM D 2216-98, 2019. The research on the service orientation modes of third party logistics in industrial clusters. In Annual Book of ASTM Standards. https://doi.org/ 10.1109/WiCom.2008.1574.
 
10.
ASTM D 2974-87, 2020. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. In Annual Book of ASTM Standards (Issue April).
 
11.
Austin, K.G., Schwantes, A., Gu, Y., Kasibhatla, P.S., 2019. What causes deforestation in Indonesia? Environmental Research Letters 14(2), 1–9. https://doi.org/10.1088/1748-9....
 
12.
Bertermann, D., Schwarz, H., 2018. Bulk density and water content-dependent electrical resistivity analyses of different soil classes on a laboratory scale. Environmental Earth Sciences 77(16), 570. https://doi.org/10.1007/s12665....
 
13.
Bhatt, S., Jain, P.K., 2014. Correlation between electrical resistivity and water content of sand – a statistical approach. American International Journal of Research in Science, Technology, Engineering & Mathematics 6(2), 115–121.
 
14.
Brown, L.E., Holden, J., Palmer, S.M., Johnston, K., Ramchunder, S.J., Grayson, R., 2015. Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river systems. Freshwater Science 34(4), 1406–1425. https://doi.org/10.1086/683426.
 
15.
Certini, G., 2005. Effects of fire on properties of forest soils: A review. Oecologia 143(1), 1–10. https://doi.org/10.1007/s00442....
 
16.
Chen, T., Xu, M., Tu, J., Wang, H., Niu, X., 2018. Relationship between Omnibus and Post-hoc Tests: An Investigation of performance of the F test in ANOVA. Shanghai Archives of Psychiatry 30(1), 60–64. https://doi.org/10.11919/j.iss....
 
17.
Cobb, A.R., Dommain, R., Tan, F., Heng, N.H.E., Harvey, C.F., 2020. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environmental Research Letters 15(11). https://doi.org/10.1088/1748-9....
 
18.
Cole, L.E.S., Åkesson, C.M., Hapsari, K.A., Hawthorne, D., Roucoux, K.H., Girkin, N.T., Cooper, H.V., Ledger, M.J., O’Reilly, P., Thornton, S.A., 2022. Tropical peatlands in the anthropocene: Lessons from the past. Anthropocene 37(January), 100324. https:// doi.org/10.1016/j.ancene.2022.100324.
 
19.
Dadap, N.C., Hoyt, A.M., Cobb, A.R., Oner, D., Kozinski, M., Fua, P.V., Rao, K., Harvey, C.F., Konings, A.G., 2021. Drainage Canals in Southeast Asian Peatlands Increase Carbon Emissions. AGU Advances 2(1), 1–14. https://doi.org/10.1029/2020av....
 
20.
Dahlin, T., Zhou, B., 2006. Multiple-gradient array measurements for multichannel 2D resistivity imaging. Near Surface Geophysics 4(2), 113–123. https://doi.org/10.3997/ 1873-0604.2005037.
 
21.
Dohong, A., Aziz, A.A., Dargusch, P., 2018. A Review of Techniques for Effective Tropical Peatland Restoration. Wetlands 38(2), 275–292. https://doi.org/10.1007/s 13157-018-1017-6.
 
22.
Ezzati, S., Najafi, A., Rab, M.A., Zenner, E.K., 2012. Recovery of soil bulk density, porosity and rutting from ground skidding over a 20-year period after timber harvesting in Iran. Silva Fennica 46(4), 521–538. https://doi.org/10.14214/sf.90....
 
23.
FAO, 2023. Standard operating procedure for soil bulk density by cylinder method. Global Soil Laboratory Network. Rome. https://doi.org/10.4060/cc7568....
 
24.
Ferreira, C.J.B., Tormena, C.A., Severiano, E.D.C., Zotarelli, L., Betioli J.E., 2021. Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Archives of Agronomy and Soil Science 67(3), 383–396. https://doi.org/ 10.1080/03650340.2020.1733535.
 
25.
Gaveau, D.L.A., Salim, M.A., Hergoualc’h, K., Locatelli, B., Sloan, S., Wooster, M., Marlier, M.E., Molidena, E., Yaen, H., DeFries, R., Verchot, L., Murdiyarso, D., Nasi, R., Holmgren, P., Sheil, D., 2014. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Scientific Reports 4, 1–7. https://doi.org/10.1038/srep06....
 
26.
Glaves, D.J., Morecroft, M., Fitzgibbon, C., Lepitt, P., Owen, M., Phillips, S., 2013. The effects of managed burning on upland peatland biodiversity, carbon and water (issue 004). Natural England Evidence Review.
 
27.
Gray, A., Davies, G.M., Domènech, R., Taylor, E., Levy, P.E., 2021. Peatland Wildfire Severity and Post-fire Gaseous Carbon Fluxes. Ecosystems 24(3), 713–725. https:// doi.org/10.1007/s10021-020-00545-0.
 
28.
Harrison, M.E., Ottay, J.B., D’Arcy, L.J., Cheyne, S.M., Anggodo, Belcher, C., Cole, L., Dohong, A., Ermiasi, Y., Feldpausch, T., Gallego-Sala, A., Gunawan, A., Höing, A., Husson, S.J., Kulu, I.P., Soebagio, S.M., Mang, S., Mercado, L., Morrogh-Bernard, H.C., Page, S.E., Priyanto, R., Ripoll Capilla, B., Rowland, L., Santos, E.M., Schreer, V., Sudyana, I.N., Taman, S.B.B., Thornton, S.A., Upton, C., Wich, S.A., van Veen, F.J.F., 2020. Tropical forest and peatland conservation in Indonesia: Challenges and directions. People and Nature 2(1), 4–28. https://doi.org/10.1002/pan3.1....
 
29.
Hassan, A.A., Toll, D.G., 2015. Water content characteristics of mechanically compacted clay soil determined using the electrical resistivity method. Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development, ISBN 978-0-7277-6067-8, 793–798. https://doi.org/10.1680/ecsmge....
 
30.
Hayasaka, H., Usup, A., Naito, D., 2020. New approach evaluating peatland fires in Indonesian factors. Remote Sensing 12(12), 1–16. https://doi.org/10.3390/RS1212....
 
31.
Hossain, M.F., Chen, W., Zhang, Y., 2015. Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic. Information Processing in Agriculture 2(3–4), 183–190. https://doi.org/10.1016/j.inpa....
 
32.
Ingram, R.C., Moore, P.A., Wilkinson, S., Petrone, R.M., Waddington, J.M., 2019. Postfire Soil Carbon Accumulation Does Not Recover Boreal Peatland Combustion Loss in Some Hydrogeological Settings. Journal of Geophysical Research: Biogeosciences 124(4), 775–788. https://doi.org/10.1029/2018JG....
 
33.
Johari, N.N., Bakar, I., Razali, S.N.M., Wahab, N., 2016. Fiber Effects on Compressibility of Peat. IOP Conference Series: Materials Science and Engineering 136(1), 1–9. https://doi.org/10.1088/1757-8....
 
34.
Juandi, M., Islami, N., 2021. Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters. Journal of Groundwater Science and Engineering 9(2), 12–19. https://doi.org/10.19637/ j.cnki.2305-7068.2021.01.002.
 
35.
Kettridge, N., Lukenbach, M.C., Hokanson, K.J., Devito, K.J., Petrone, R.M., Mendoza, C.A., Waddington, J.M., 2019. Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying. Scientific Reports 9(1), 5–10. https://doi.org/10.1038/ s41598-019-40033-7.
 
36.
Khoerani, A., Iskandar, Sofyan, A., Sumarna, T., Amalia, D., Sulaiman, S., 2023. Laboratory Testing-Based Characterization of Peat in Palangkaraya, Central Kalimantan. Technium: Romanian Journal of Applied Sciences and Technology 16, 26–33. https://doi.org/ 10.47577/technium.v16i.9952.
 
37.
Kiely, L., Spracklen, D.V., Arnold, S.R., Papargyropoulou, E., Conibear, L., Wiedinmyer, C., Knote, C., Adrianto, H.A., 2021. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications 12(1), 1–11. https://doi.org/10.1038/ s41467-021-27353-x.
 
38.
Kowalczyk, S., Cabalski, K., Radzikowski, M., 2017. Application of geophysical methods in the evaluation of anthropogenic transformation of the ground: A case study of the Warsaw environs, Poland. Engineering Geology 216, 42–55. https://doi.org/10.1016/ j.enggeo.2016.11.008.
 
39.
Kranz, C.N., McLaughlin, R.A., Johnson, A., Miller, G., Heitman, J.L., 2020. The effects of compost incorporation on soil physical properties in urban soils – A concise review. Journal of Environmental Management 261, 110209. https://doi.org/10.1016/ j.jenvman.2020.110209.
 
40.
Krüger, J.P., Leifeld, J., Glatzel, S., Szidat, S., Alewell, C., 2015. Biogeochemical indicators of peatland degradation - A case study of a temperate bog in northern Germany. Biogeosciences 12(10), 2861–2871. https://doi.org/10.5194/bg-12-....
 
41.
Kurnianto, S., Warren, M., Talbot, J., Kauffman, B., Murdiyarso, D., Frolking, S., 2015. Carbon accumulation of tropical peatlands over millennia: A modeling approach. Global Change Biology 21(1), 431–444. https://doi.org/10.1111/gcb.12....
 
42.
Laiho, R., Pearson, M., 2016. Surface peat and its dynamics following drainage – do they facilitate estimation of carbon losses with the C/ash method? Mires and Peat 17(8), 1–19. https://doi.org/10.19189/MaP.2....
 
43.
Lawson, I.T., Kelly, T.J., Aplin, P., Boom, A., Dargie, G., Draper, F.C.H., Hassan, P.N.Z.B.P., Hoyos-Santillan, J., Kaduk, J., Large, D., Murphy, W., Page, S.E., Roucoux, K.H., Sjögersten, S., Tansey, K., Waldram, M., Wedeux, B.M.M., Wheeler, J., 2015. Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetlands Ecology and Management 23(3), 327–346. https://doi.org/10.1007/s11273....
 
44.
Leng, L.Y., Ahmed, O.H., Jalloh, M.B., 2019. Brief review on climate change and tropical peatlands. Geoscience Frontiers 10(2), 373–380. https://doi.org/10.1016/j.gsf..... 018.
 
45.
Liu, H., Lennartz, B., 2019. Hydraulic properties of peat soils along a bulk density gradient - A meta study. Hydrological Processes 33(1), 101–114. https://doi.org/10.1002/hyp. 13314.
 
46.
Liu, H., Rezanezhad, F., Lennartz, B., 2022. Impact of land management on available water capacity and water storage of peatlands. Geoderma 406(January), 1–7. https://doi.org/ 10.1016/j.geoderma.2021.115521.
 
47.
Liu, H., Zak, D., Zableckis, N., Cossmer, A., Langhammer, N., Meermann, B., Lennartz, B., 2023. Water pollution risks by smoldering fires in degraded peatlands. Science of the Total Environment 871(February 2023). https://doi.org/10.1016/j.scit....
 
48.
Liu, L., Lu, Y., Fu, Y., Horton, R., Ren, T., 2022. Estimating soil water suction from texture , bulk density, and electrical resistivity. Geoderma 409(115630), 1–41. https://doi.org/ 10.1016/j.geoderma.2021.115630.
 
49.
Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O., Wilkinson, P.B., 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics 95, 135–156. https://doi.org/10.1016/j.japp....
 
50.
Loke, M.H., Rucker, D.F., Chambers, J.E., Wilkinson, P.B., and Kuras, O., 2011. Electrical resistivity surveys and data interpretation. 2nd ed. Encyclopedia of Solid Earth Geophysics. Springer-Verlag. https://doi.org/10.1007/978-90....
 
51.
Lourenco, M., Fitchett, J.M., Woodborne, S., 2023. Peat definitions: A critical review. Progress in Physical Geography 47(4), 506–520. https://doi.org/10.1177/030913....
 
52.
Lukenbach, M.C., Hokanson, K.J., Devito, K.J., Kettridge, N., Petrone, R.M., Mendoza, C.A., Granath, G., Waddington, J.M., 2017. Post-fire ecohydrological conditions at peatland margins in different hydrogeological settings of the Boreal Plain. Journal of Hydrology 548, 741–753. https://doi.org/10.1016/j.jhyd....
 
53.
Marcotte, A.L., Limpens, J., Stoof, C.R., Stoorvogel, J.J., 2022. Can ash from smoldering fires increase peatland soil pH? International Journal of Wildland Fire 31(6), 607–620. https://doi.org/10.1071/WF2115....
 
54.
Miettinen, J., Shi, C., Liew, S.C., 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation 6, 67–78. https://doi.org/10.1016/j.gecc....
 
55.
Muhammad, J., Islami, N., 2020. Assessment of Groundwater Quality Based on Geoelectric and Hydrogeochemical Paremeters around Slaughterhouses of Pekanbaru City, Indonesia. Journal of Physics: Conference Series 1655(1). https://doi.org/10.1088/1742-6....
 
56.
Muqaddas, B., Zhou, X., Lewis, T., Wild, C., Chen, C., 2015. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Science of the Total Environment 536, 39–47. https://doi.org/10.1016/j.scit....
 
57.
Nanda, A., Mohapatra, D.B.B., Mahapatra, A.P.K., Mahapatra, A.P.K., Mahapatra, A.P.K. 2021. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. International Journal of Statistics and Applied Mathematics 6(1), 59–65. https://doi.org/10.22271/maths....
 
58.
Noble, A., Palmer, S.M., Glaves, D.J., Crowle, A., Holden, J., 2019. Peatland vegetation change and establishment of re-introduced Sphagnum moss after prescribed burning. Biodiversity and Conservation 28(4), 939–952. https://doi.org/10.1007/s10531....
 
59.
Nurmaisarah, Z.S., Baba, M., Mohamad, H.M., Hardianshah, S., 2023. Geoelectrical Characterization of the Peat Soil at Klias Peninsula, Beaufort, Sabah (Malaysia). Iranian Journal of Geophysics 17(3), 27–44. https://doi.org/10.30499/IJG.2....
 
60.
Osaki, M., Tsuji, N., 2015. Tropical peatland ecosystems. Tropical Peatland Ecosystems (January). https://doi.org/10.1007/978-4-....
 
61.
Osaki, M., Tsuji, N., Segah, H., Helmy, F., 2016. Tropical peatland ecosystems. Tropical Peatland Ecosystems (Issue ICCC, pp. 137–147).
 
62.
Page, S.E., Baird, A.J., 2016. Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources 41, 35–57. https://doi.org/10.1146/annure....
 
63.
Page, S.E., Hooijer, A., 2016. In the line of fire: The peatlands of Southeast Asia. Philosophical Transactions of the Royal Society B: Biological Sciences 371(1696). https://doi.org/10.1098/rstb.2....
 
64.
Page, S.E., Rieley, J.O., Banks, C.J., 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17(2), 798–818. https://doi.org/10.1111/ j.1365-2486.2010.02279.x.
 
65.
Reynolds, W.D., Bowman, B.T., Drury, C.F., Tan, C.S., Lu, X., 2002. Indicators of good soil physical quality: Density and storage parameters. Geoderma 110(1–2), 131–146. https://doi.org/10.1016/S0016-....
 
66.
Robinson, D.A., Thomas, A., Reinsch, S., Lebron, I., Feeney, C.J., Maskell, L.C., Wood, C.M., Seaton, F.M., Emmett, B A., Cosby, B.J., 2022. Analytical modelling of soil porosity and bulk density across the soil organic matter and land-use continuum. Scientific Reports 12(1), 1–13. https://doi.org/10.1038/s41598....
 
67.
Romero-Ruiz, A., Linde, N., Baron, L., Breitenstein, D., Keller, T., Or, D., 2022. Lasting Effects of Soil Compaction on Soil Water Regime Confirmed by Geoelectrical Monitoring. Water Resources Research 58(2), 1–25. https://doi.org/10.1029/2021WR....
 
68.
Sandman, J., 2018. Fiber Content As an Indicator of Peat. Ostfalia Hochschule, Wolfenbüttel, Germany.
 
69.
Sinclair, A.L., Graham, L.L.B., Putra, E.I., Saharjo, B.H., Applegate, G., Grover, S.P., Cochrane, M.A., 2020. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Science of the Total Environment 699, 134199. https://doi.org/10.1016/j.scit....
 
70.
Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2013. Climate change 2013 the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 9781107057. https://doi.org/10.1017/CBO978....
 
71.
Swails, E., Jaye, D., Verchot, L., Hergoualc’h, K., Schirrmann, M., Borchard, N., Wahyuni, N., Lawrence, D., 2018. Will CO2 Emissions from Drained Tropical Peatlands Decline Over Time? Links Between Soil Organic Matter Quality, Nutrients, and C Mineralization Rates. Ecosystems 21(5), 868–885. https://doi.org/10.1007/s10021....
 
72.
Syaufina, L., Hamzah, A.A., 2021. Changes of tree species diversity in peatland impacted by moderate fire severity at Teluk Meranti, Pelalawan, Riau province, Indonesia. Biodiversitas 22(5), 2899–2908. https://doi.org/10.13057/biodi....
 
73.
Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press (Second Edi). https://doi.org/10.1201/978036....
 
74.
Thompson, D.K., Simpson, B.N., Whitman, E., Barber, Q.E., Parisien, M.A., 2019. Peatland hydrological dynamics as a driver of landscape connectivity and fire activity in the Boreal plain of Canada. Forests 10(7). https://doi.org/10.3390/f10070....
 
75.
Uda, S.K., Hein, L., Sumarga, E., 2017. Towards sustainable management of Indonesian tropical peatlands. Wetlands Ecology and Management 25(6), 683–701. https://doi.org/ 10.1007/s11273-017-9544-0.
 
76.
Valois, R., Vargas, J.A., AcDonell, S., Pinones, C.G., Fernandoy, F., Yánez Carrizo, G., Cuevas, J.G., Sproles, E.A., Maldonado, A., 2021. Improving the underground structural characterization and hydrological functioning of an Andean peatland using geoelectrics and water stable isotopes in semi-arid Chile. Environmental Earth Sciences 80(1), 1–14. https://doi.org/10.1007/s12665....
 
77.
Vetrita, Y., Cochrane, M.A., 2020. Fire frequency and related land-use and land-cover changes in Indonesia’s Peatlands. Remote Sensing 12(1), 1–23. https://doi.org/10.3390/ RS12010005.
 
78.
Wahyono, S.C., Kurnain, A., Nata, I.F., Asyari, M., 2023. Post Peat Fire Soil Natural Recovery Based on Physical Properties in South Kalimantan, Indonesia. International Journal of Plant & Soil Science 35(18), 1416–1424. https://doi.org/10.9734/IJPSS/ 2023/v35i183409.
 
79.
Wahyono, S.C., Kurnain, A., Nata, I.F., Asyari, M., 2024. Investigation of Post-Fire Peatland Natural Recovery, South Kalimantan, Indonesia. Ecological Engineering & Environmental Technology 25(4), 104–115. //doi.org/10.12912/27197050/183577.
 
80.
Walter, K., Don, A., Tiemeyer, B., Freibauer, A., 2016. Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison. Soil Science Society of America Journal 80(3), 579–591. https://doi.org/10.2136/sssaj2....
 
81.
Xue, W., Ma, H., Xiang, M., Tian, J., Liu, X., 2023. From Sphagnum to shrub: Increased acidity reduces peat bacterial diversity and keystone microbial taxa imply peatland degradation. Land Degradation and Development 34(17), 5259–5272. https://doi.org/ 10.1002/ldr.4842.
 
82.
Yulianti, N., Kusin, K., Naito, D., Kawasaki, M., Kozan, O., Susatyo, K.E., 2020. The Linkage of El Niño-induced Peat Fires and Its Relation to Current Haze Condition in Central Kalimantan. Journal of Wetlands Environmental Management 8(2), 100–116. https://doi.org/10.20527/jwem.....
 
83.
Yusa, M., Sutikno, S., Lita, D., Ari, S., Evelyn, Fadli, D., Dian, P., 2019. Resistivity and Physical characteristic of Meranti’s Peat. Journal of Physics: Conference Series 1351(1). https://doi.org/10.1088/1742-6....
 
84.
Zuhdi, M., Armanto, M.E., Setiabudidaya, D., Ngudiantoro, Sungkono. 2019. Exploring peat thickness variability using VLF method. Journal of Ecological Engineering 20(5), 142–148. https://doi.org/10.12911/22998....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top