PL EN
ORIGINAL PAPER
Rustification as a collateral process in clay-illuvial soils of northern Poland
 
More details
Hide details
1
Wydział Nauk o Ziemi, Katedra Gleboznawstwa i Kształtowania Krajobrazu, Uniwersytet Mikołaja Kopernika w Toruniu, Polska
 
 
Submission date: 2021-06-20
 
 
Final revision date: 2021-08-30
 
 
Acceptance date: 2021-10-28
 
 
Online publication date: 2021-12-31
 
 
Publication date: 2021-12-31
 
 
Corresponding author
Marcin Świtoniak   

Wydział Nauk o Ziemi, Katedra Gleboznawstwa i Kształtowania Krajobrazu, Uniwersytet Mikołaja Kopernika w Toruniu, Polska
 
 
Soil Sci. Ann., 2021, 72(4)143444
 
KEYWORDS
ABSTRACT
The lessivage (clay-illuviation) and rustification are among the two most common soil-forming processes in soil cover of Poland. The horizons of illuvial accumulation of the clay fraction are observed in approx. 50% of Polish soils, while rusty soils constitute about 14% - that is almost half of all sandy soils in the country. Due to the different conditions of both processes - mainly lithological in nature - they are generally perceived as separable phenomena leading to the formation of two different types of soils – clay-illuvial soils (WRB - Luvisols) and rusty soils (Brunic Arenosols). However, in some soil profiles, especially those formed in sands covering glacial tills, the effects of both of these soil-forming processes are observed. The aim of the study was to characterize the soils with the features related to the illuvial illuviation (lessivage) of the clay fraction and the accumulation of iron sesquioxides in the form of iron coatings formed in-situ in the sandy material (rustification). In order to check how often these processes take place simultaneously, 29 soil profiles with a texture enabling the simultaneous acting of both processes in the young glacial areas of northern Poland were analyzed. In as many as 66% of cases, the presence of features related to both processes were found. The lack of the rustification was recorded predominantly in arable soils - often shallowed by erosion or with a clear stagnation of water in the eluvial horizons. Most of the studied soils were classified as texturally contrasted rusty clay-illuvial soil (WRB - Abruptic Luvisols (Brunic)) or lamellic rusty clay-illuvial soil (WRB - Lamellic Luvisols (Brunic)). Thus, both processes in soils developed from cover sands underlying by glacial tills are complementary to each other, and the profiles of A-Bv-Et-2Bt-2Ck morphology (designation of horizons according to Polish Soil Classification (PSC, 2019)) should be perceived as fully formed and undisturbed by human activity.
 
REFERENCES (50)
1.
Bednarek, R., 1991, Wiek, geneza i stanowisko systematyczne gleb rdzawych w świetle badań paleopedologicznych w okolicach Osia. Uniwersytet Mikołaja Kopernika, Toruń, 1-102. (in Polish with English summary).
 
2.
Bednarek, R., Prusinkiewicz, Z., 1997. Geografia gleb. PWN, Warszawa. pp. 287. (in Polish).
 
3.
Budek, A., 2010. Genesis and age of the humic horizons in the floodplain at the carpathian foreland. Geographical Studies Nr 222. 116 pp. (in Polish with English summary).
 
4.
Cieśla, W., Wojtasik, M., Miraszewski, R., Rogalski, D. 1978. Gleby Wysoczyzny Chełmińskiej wytworzone z utworów pyłowych. Roczniki Gleboznawcze – Soil Science Annual 29(1), 127-140. (in Polish with English summary).
 
5.
Colombo, C., Palumbo, G., He, JZ, Pinton, R., Cesco, S., 2014. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments 14, 538–548. https://doi.org/10.1007/s11368....
 
6.
Dąbkowska-Naskręt, H., Jaworska, H. 1997. Gleby płowe wytworzone z utworów pyłowych Pojezierza Chełmińsko-Dobrzyńskiego i Wysoczyzny Kaliskiej. Część I. Morfologia i właściwości fizykochemiczne. Roczniki Gleboznawcze – Soil Science Annual 48(1/2), 59-69. (in Polish with English summary).
 
7.
Duchaufour, P., 1982, Brunified soils. In: Pedology. Springer, Dordrecht. https://doi.org/10.1007/978-94....
 
8.
Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Egglestone, H.S., L. Buendia, K. Miwa, T. Ngara and K. Tanabe (Eds). Intergovernmental Panel on Climate Change (IPCC), IPCC/IGES, Hayama, Japan.
 
9.
IUSS Working Group WRB, 2015. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report, 106. FAO, Rome.
 
10.
Jankowski, M., Kruczkowska, B., Bednarek, R., 2011. Topographical inversion of sandy soils due to local conditions in Northern Poland. Geomorphology 135(3-4), 277-283 DOI:10.1016/j.geomorph.2011.02.005.
 
11.
Jankowski, M., 2014a. The evidence of lateral podzolization in sandy soils of Northern Poland. Catena 112, 139-147. https://doi.org/10.1016/j.cate....
 
12.
Jankowski, M., 2014b, Bielicowanie jako wtórny proces w glebach rdzawych Brodnickiego Parku Krajobrazowego, [in:] M. Świtoniak, M. Jankowski, R. Bednarek (red.), Antropogeniczne przekształcenia pokrywy glebowej Brodnickiego Parku Krajobrazowego, Wydawnictwo Naukowe UMK, Toruń, 9–24.
 
13.
Jonczak, J. 2013, Soil organic matter properties in Stagnic Luvisols under different land use types. Acta Agrophysica 20(4), 565-576.
 
14.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. https://doi.org/10.2478/ssa-20....
 
15.
Kacprzak, A., Derkowski, A., 2007. Cambisols developed from cover-beds in the Pieniny Mts. (southern Poland) and their mineral composition. Catena 71(2), 292-297. https://doi.org/10.1016/j.cate....
 
16.
Kobierski, M., 2013. Morphology, properties and mineralogical composition of eroded Luvisols in selected morainic areas of the Kujavian and Pomeranian Province. University of Technology and Life Sciences. Bydgoszcz.
 
17.
Kondracki, J., 2009. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.
 
18.
Konecka-Betley, K. 1968. Zagadnienie żelaza w procesie glebotwórczym. Roczniki Gleboznawcze – Soil Science Annual 19(1), 51-97. (in Polish with English summary).
 
19.
Konecka-Betley, K., Janowska, E., 1996. Wiek i pochodzenie osadów a niektóre procesy glebotwórcze. Roczniki Gleboznawcze – Soil Science Annual 47 (suppl.), 113-123. (in Polish with English summary).
 
20.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F. 2006. World Map of Köppen-Geiger Climate Classification updated. Meteorologische Zeitschrift 15, 259–263.
 
21.
Kowalkowski, A., Nowak, G., 1968, Gleby bielicowe wzgórz ostrzeszowskich wytworzone z piasków akumulacji peryglacjalnej. Roczniki Gleboznawcze – Soil Science Annual 19(2), 365-377. (in Polish with English summary).
 
22.
Kowalkowski, A. Borzyszkowski, J., Porębska, G., 1981. Geoekologiczne podstawy rozpoznawcze klasyfikacji i kartografii gleb rdzawych. IBL. Warszawa-Sękocin.
 
23.
Kowalska, J.B., Skiba, M., Maj-Szeliga, K.. Mazurek R., Zaleski, T., 2021. Does calcium carbonate influence clay mineral transformation in soils developed from slope deposits in Southern Poland? Journal of Soils and Sediments 21, 257–280. https://doi.org/10.1007/s11368....
 
24.
Kruczkowska, B., Błaszkiewicz, M., Jonczak, J., Uzarowicz, Ł., Moska, P., Brauer, A., Bonk, A., Słowiński, M., 2020. The Late Glacial pedogenesis interrupted by aeolian activity in Central Poland – records from the Lake Gościąż catchment, Catena 185, https://doi.org/10.1016/j.cate....
 
25.
Kühn, P., 2003. Micromorphology and Late Glacial/Holocene genesis of Luvisols in Mecklenburg–Vorpommern (NE-Germany). Catena 54, 537–555.
 
26.
Kühn, P., Billwitz, K., Bauriegel, A., Kühn, D., Eckelmann, W. 2006. Distribution and Genesis of Fahlerden (Albeluvisols) in Germany. Journal of Plant Nutrition and Soil Science 169, 420–433.
 
27.
Loba, A., Waroszewski, J., Tikhomirov, D., Calitri, F., Christl, M., Sykuła. M., Egli, M., 2021. Tracing erosion rates in loess landscape of the Trzebnica Hills (Poland) over time using fallout and cosmogenic nuclides. Journal of Soils and Sediments 21, 2952–2968. https://doi.org/10.1007/s11368....
 
28.
Marcinek, J., Komisarek, J. 2004. Antropogeniczne przekształcenia gleb Pojezierza Poznańskiego na skutek intensywnego użytkowania rolniczego. AR. Poznań. (in Polish with English summary).
 
29.
Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 81–88.
 
30.
Munsell Soil Colour Charts, 2000. GreagMacbeth, New Windsor.
 
31.
Niewiarowski, W., 1959. Glacial forms and types of deglaciations on the moraine plateau of Chełmno (Bydgoszcz district). Studia Soc. Sci. Torun. Section C. 1. 4. Toruń. (In Polish with English summary).
 
32.
Niewiarowski, W., 1986. Morphogenesis of the Brodnica outwash on the background of ther glacial landforms of Brodnica Lake District. AUNC Geogr. 19(60), 3–30. (in Polish with English summary).
 
33.
Niewiarowski, W., Wysota, W., 1986. Moraine plateau levels of the Brodnica Moraine Plateau and their genesis. Acta Universitatis Nicolai Copernici Geografia 19 (60), 39–46. (in Polish with English summary).
 
34.
Paluszek, J., 2010. The changes of soil cover as a result of erosion. Prace i Studia Geograficzne 45, 279–294. (in Polish with English summary).
 
35.
Papiernik, P., Forysiak, J., Jankowski, M. 2018, Kształtowanie się powierzchni stanowiska w świetle procesów naturalnych oraz oddziaływania osadnictwa pradziejowego i czasów historycznych, [w:] Papiernik P., Płaza D.K. (red.) Od epoki kamienia do współczesności: badania archeologiczne w Redczu Krukowym na Kujawach. T. 1, Fundacja Badań Archeologicznych im. prof. K. Jażdżewskiego: Muzeum Archeologiczne i Etnograficzne, Łódź, 59-67.
 
36.
Podlasiński, M., 2013. Denudation of anthropogenic impact on the diversity of soil cover and its spa-tial structure in the agricultural landscape of moraine. West Pomeranian University of Technology. Szczecin. (in Polish with English summary).
 
37.
Prusinkiewicz, Z., Bednarek, R., 1983, Współzależność rozwoju gleb i roślinności w późnym plejstocenie i holocenie w północnej części sandru Wdy z uwzględnieniem wyników analizy palinologicznej. Cz. I: Geneza gleb rdzawych w świetle badań paleopedologicznych. Sprawozdanie z badań naukowych. V Komitet Badań Czwartorzędu PAN: 90794.
 
38.
Prusinkiewicz, Z., Bednarek, R., Kosko, A., Szmyt, M., 1994. Age, properties and genesis of illuvial bands in the light of paleopedological and archaeological investigations. Roczniki Gleboznawcze – Soil Science Annual 45(1/2), 5-19. (in Polish with English summary).
 
39.
Polish Soil Classification (Systematyka Gleb Polski), 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa: 235 pp.
 
40.
Schaetzl, R.J., Anderson, S., 2005. Soils: Genesis and Geomorphology. Cambridge University Press.
 
41.
Sinkiewicz, M., 1998. The development of anthropogenic denudation in central part of northern Poland. Nicolaus Copernicus University, Toruń. (in Polish with English summary).
 
42.
Solon, J., Borzyszkowski, J, Bidłasik, M., Richling, A, Badora, K, Balon, J, Brzezińska-Wójcik, T, Chabudziński, Ł., Dobrowolski, R, Grzegorczyk, I, Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, M., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143– 170. https://doi.org/GPol.0115.
 
43.
Stępniewski, W., Stępniewska Z., Przywara, G., Brzezińska, M., Włodarczyk, T., 2000. Characteristics of aeration properties of Orthic Luvisol from Poland under different land use. International Agrophysics 14, 431-438.
 
44.
Sykuła, M., Jankowski, M., Mendyk, Ł., Dąbrowski, M., Jasińska, J., Michalak, J., Michalski, A., Pindral, S., Bednarek, R. 2019. Wczoraj i dziś Mapy gleb Polski 1300 000 - próba adaptacji do Systematyki gleb Polski 2019 (SGP6). W 30. Kongres Polskiego Towarzystwa Gleboznawczego - Gleba źródłem życia, Bartmiński P., Dębicki R. (red.). Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Lublin, 108-109.
 
45.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116, 173–184. https://doi.org/10.1016/j.cate....
 
46.
Świtoniak, M., Mroczek, P., Bednarek, R., 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Districts (North Poland). Catena 137, 583-595. https://doi.org/10.1016/j.cate....
 
47.
Waroszewski, J., Egli, M., Kabała, C., Kierczak J., Brandova, D., 2016. Mass fluxes and clay mineral formation in soils developed on slope deposits of the Kowarski Grzbiet (Karkonosze Mountains, Czech Republic/Poland). Geoderma 264B, 363–378. https://doi.org/10.1016/j.geod....
 
48.
Wójcik, G., Marciniak, K., 1987a. Thermal conditions in central part of the North Poland in the years 1951-1970. Acta Universitatis Nicolai Copernici Geografia 20, 29–50. (in Polish).
 
49.
Wójcik, G., Marciniak, K., 1987b. Precipitations in central part of the North Poland in the years 1951-1970. Acta Universitatis Nicolai Copernici Geografia 20, 51–69. (in Polish).
 
50.
Yost, J.L., Roden, E., Hartemink, A.E., 2019. Geochemical fingerprint and soil carbon of sandy alfisols. Soil Systems 3(3), 59. https://doi.org/10.3390/soilsy....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top