PL EN
ORIGINAL PAPER
First application of the QBS-ar Index in South America for the assessment of the biological quality of soils in Chile
Loris Galli 1  
,   Elisa Lanza 1  
,   Ivano Rellini 1  
 
More details
Hide details
1
Department of Earth, Environment and Life Sciences (DISTAV), Genoa University, Italy
CORRESPONDING AUTHOR
Loris Galli   

Department of Earth, Environment and Life Sciences (DISTAV), Genoa University, Corso Europa 26, 16132, Genoa, Italy
Submission date: 2020-11-29
Final revision date: 2021-02-03
Acceptance date: 2021-04-21
Online publication date: 2021-07-30
 
 
KEYWORDS
ABSTRACT
The QBS-ar (Biological Quality of Soil, based on arthropods) index was applied in Coyhaique National Reserve (Chile). The aims of our research were to assess the abundance and diversity of soil microarthropods in different South American habitats, evaluating to what extent chemical parameters and seasonal changes of weather conditions can affect these organisms. Moreover we wanted to verify if the QBS-ar index was applicable in the Neotropical biogeographic region in order to distinguish between habitats subject to different levels and types of disturbance. Therefore, four habitats were investigated: primary native Nothofagus spp. forest (OG), native forest of secondary growth after fires (SG), reforestation pine forest (PI) and anthropogenic grassland (PR). During each of seven sampling sessions (nearly one every 10 days) between October and December 2017, five 1 liter soil cores were collected in each habitat. Microarthropods extracted by means of Berlese-Tullgren funnels were counted, identified to the order level and evaluated based on their morphological adaptation to life in soil in order to assess QBS-ar values and related quality classes. Both microarthropods communities and QBS-ar values comparisons showed that OG and SG forests are close to each other, and the same is true for PI and PR. Soils of the former couple of habitats were characterized by a much higher biological quality level with QBS-ar values of 129.1 ± 20.2 and 111.8 ± 6.4, respectively, both corresponding to the quality class 6 (out of a maximum of 7). On the contrary, PI and PR scored QBS-ar values of 83 ± 13.5 and 80.3 ± 10.8, respectively, and quality classes ranged between 3 and 4. Relationships among dominant and subdominant microarthropods taxa and environmental variables were analysed. In particular some chemical properties of soils (pH, CaCO3, Nt , soluble P, exchangeable K, organic matter, C/N ratio) and weather variables (cumulated rainfalls and mean temperatures during the 7 days before each sampling session) were considered. This is the first time the QBS-ar index has been applied in the Southern Hemisphere. Our results seem to indicate this index can be “exported” also to South America, resulting a useful tool for a user friendly assessment of the impact on terrestrial environments by different forms of disturbances and of habitat management.
 
REFERENCES (77)
1.
Andrés, P., Mateos, E., Tarrasóna, D., Cabrerab, C., Figuerola, B., 2011. Effects of digested, composted, and thermally dried sewage sludge on soil microbiota and mesofauna. Applied Soil Ecology 48, 236–242. https://doi.org/10.1016/j.apso....
 
2.
Arredondo, F., García-Montero, L.G., Menta, C., Valverde-Asenjo, I., 2013. Soil quality indicators for forest management. [In:] Martínez-Falero, E., Martín-Fernández, S., García-Abril, A. (Eds.), Quantitative techniques in participatory forest management. CRC Press, Taylor & Francis, Boca-Ratón, 179‒240.
 
3.
Aspetti, G.P., Boccelli, R., Ampollini, D., Del Re, A.A.M., Capri, E., 2010. Assessment of soil-quality index based on microarthropods in corn cultivation in Northern Italy. Ecological Indicators 10(2), 129–135. https://doi.org/10.1016/j.ecol....
 
4.
Bano, R., Roy, S., 2016. Extraction of soil microarthropods: a low cost Berlese-Tullgren funnels extractor. International Journal of Fauna and Biological Studies 3(2), 14–17. https://www.faunajournal.com/a....
 
5.
Blasi, S., Menta, C., Balducci, L., Conti, F.D., Petrini, E., Piovesan, G., 2013. Soil microarthropod communities from Mediterranean forest ecosystems in Central Italy under different disturbances. Environmental Monitoring and Assessment 187(2), 1637–1655. https://doi.org/10.1007/s10661....
 
6.
Borie, F., Rubio, R., 2003. Total and organic phosphorus in Chilean volcanic soils. Gayana Botanica 60, 69–73. http://dx.doi.org/10.4067/S071....
 
7.
Breuning-Madsen, H., Elberling, B., Balstrøm, T., Holst, M., Freudenberg, M., 2009. A comparison of soil organic carbon stock in ancient and modern land use systems in Denmark. European Journal of Soil Science 60, 55‒63. https://doi.org/10.1111/j.1365....
 
8.
Brevik, E.C., 2012. Soils and climate change: gas fluxes and soil processes. Soil Horizons 53(4), 12‒23. https://doi.org/10.2136/sh12-0....
 
9.
Chen, C.R., Condron, L.M., Xu, Z.H., 2008. Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a review. Forest Ecology and Management 255, 396–409. https://doi.org/10.1016/j.fore....
 
10.
Choi, W.II, Moorhead, D.L., Neher, D.A., Ryoo, M.II, 2006. A modeling study of soil temperature and moisture effects on population dynamics of Paronychiurus kimi (Collembola: Onychiuridae). Biology and Fertility of Soils 43, 69–75. https://doi.org/10.1007/s00374....
 
11.
Cluzeau, D., Guernion, M., Chaussod, R., Martin-Laurent, F., Villenave, C., Cortet, J., Ruiz-Camacho, N., Pernin, C., Mateille, T., Philippot, L., Bellido, A., Rougé, L., Arrouays, D., Bispo, A., Pérès, G., 2012. Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. European Journal of Soil Biology 49, 63‒72. https://doi.org/10.1016/j.ejso....
 
12.
Coleman, D.C., Wall, D.H., 2015. Soil fauna: occurrence, biodiversity, and roles in ecosystem function. Chapter 5. [In:] Paul, E.A. (Ed.), Soil microbiology, ecology, and biochemistry; 4th ed. Academic Press, New York, 111‒149. https://doi.org/10.1016/B978-0....
 
13.
CONAF (Corporación Nacional Forestal, CL), 2011. Catastro de los recursos vegetacionales nativos de Chile: monitoreo de cambios y actualizaciones período 1997-2011. Santiago, Chile.
 
14.
CONAF (Corporación Nacional Forestal, CL), 2009. Plan de manejo Reserva Nacional Coyhaique. Reserva Nacional Coyhaique.
 
15.
Cortet, J., Gomot de Vauflery, A., Poinsot-Balaguer, N., Gomot, L., Texier, C., Cluzeau, D., 1999. The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology 35, 115‒134. https://doi.org/10.1016/S1164-....
 
16.
Da Silva, P.M., Carvalho, F., Dirilgen, T., Stone, D., Cramer, R., Bolger, T., Sousa, J.P., 2016. Traits of collembolan life-form indicate land use types and soil properties across an European transect. Applied Soil Ecology 97, 66–77. https://doi.org/10.1016/j.apso....
 
17.
Dumas, J.B.A., 1831. Procédés de l’analyse organique. Annales de chimie et de physique 247, 198–213.
 
18.
Elo, R.A., Sorvari, J., 2019. The impacts of forest clear felling on the oribatid mite fauna inhabiting Formica aquilonia nest mounds. European Journal of Soil Biology 94, 103101. https://doi.org/10.1016/j.ejso....
 
19.
Fajardo, A., Piper, F.I., 2015. High foliar nutrient concentrations and resorption efficiency in Embothrium coccineum (Proteaceae) in southern Chile. American Journal of Botany 102, 208–216. https://doi.org/10.3732/ajb.14....
 
20.
Fantappiè, M., L’Abate, G., Costantini, E.A.C., 2010. Factors influencing soil organic carbon variations in Italy during the last three decades. [In:] Zdruli, P., Pagliai, S., Kapur, M., Faz Cano, P. (Eds.), Land degradation and desertification: assessment, mitigation and remediation. Springer Science + Business Media B.V., 435‒465.
 
21.
Galli, L., 2020. An user friendly tool to assess the effects on agricultural soils of different practices: the QBS-ar index. Modern Concepts and Developments in Agronomy 6(5), 680–682. https://doi.org/10.31031/MCDA.....
 
22.
Galli, L., Bonacchi, A., Capurro, M., Conti, I., Crovetto, F., Ferrari, C., Conti, F.D., Menta, C., 2015. Assessment of the trampling impact on soil Arthropoda in a Mediterranean habitat. Acta Societatis Zoologicae Bohemicae 79(3), 193–198. https://doi.org/10.13140/RG.2.....
 
23.
Galli, L., Capurro, M., Menta, C., Rellini, I., 2014. Is the QBS-ar index a good tool to detect the soil quality in Mediterranean areas? A cork tree Quercus suber L. (Fagaceae) wood as a case of study. Italian Journal of Zoology 81(1), 126–135. https://doi.org/10.1080/112500....
 
24.
Galli, L., Capurro, M., Molyneux, T., Torti, C., Zinni, M., 2019. Ecology of Italian Protura. Pedobiologia 73, 20–28. https://doi.org/10.1016/j.pedo....
 
25.
Gardi, C., Angelini, M., Barceló, S., Comerma, J., Cruz Gaistardo, C., Encina Rojas, A., Jones, A., Krasilnikov, P., Mendonça Santos Brefin, M.L., Montanarella, L., Muñiz Ugarte, O., Schad, P., Vara Rodríguez, M.I., Vargas, R., Ravina da Silva, M. (Eds.), 2015. Soil atlas of Latin America and the Caribbean. European Commission – Publications Office of the European Union, L-2995 Luxembourg.
 
26.
Gonçalves, F., Nunes, C., Carlos, C., López, Á., Oliveira, I., Crespi, A., Teixeira, B., Pinto, R., Costa, C.A., Torres, R., 2020. Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards? Agriculture Ecosystems & Environment 294, 106863. https://doi.org/10.1016/j.agee....
 
27.
Gundale, M.J., Sutherland, S., DeLuca, T.H., 2008. Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum. Ecography 31, 201–210. https://doi.org/10.1111/j.0906....
 
28.
Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9. http://palaeo-electronica.org/....
 
29.
Hartley, W., Uffindell, L., Plumb, A., Rawlinson, H.A., Putwain, P., Dickinson, N.M., 2008. Assessing biological indicators for remediated anthropogenic urban soils. Science of the Total Environment 405, 358–369. https://doi.org/10.1016/j.scit....
 
30.
Hasegawa, M., 2002. The response of collembolan community to the amount and composition of organic matter of a forest floor. Pedobiologia 46, 353–364. https://doi.org/10.1078/0031-4....
 
31.
Hopkin, S.P., 1997. Biology of the Springtails (Insecta: Collembola). Oxford University Press.
 
32.
IUSS Working Group WRB, 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
 
33.
Kerven, G.L., Menzies, N.W., Geyer, M.D., 2000. Soil carbon determination by high temperature combustion - a comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value. Communications in Soil Science and Plant Analysis 31, 1935–1939. https://doi.org/10.1080/001036....
 
34.
Kotroczó, Z., Juhos, K., Biró, B., Kocsis, T., Pabar, S.A., Varga, C., Fekete I., 2020. Effect of detritus manipulation on different organic matter decompositions in temperate deciduous forest soils. Forests 11(6), 675. https://doi.org/10.3390/f11060....
 
35.
Laiho, R., Silvan, N., Carcamo, H., Vasander, H., 2001. Effects of water level and nutrients on spatial distribution of soil mesofauna in peatlands drained for forestry in Finland. Applied Soil Ecology 16, 1–9. https://doi.org/10.1016/S0929-....
 
36.
Lajtha, K., Bowden, R.D., Crow, C., Fekete, I., Kotroczó, Z., Plante, A., Simpson, M.J., Nadelhoffer, K.J., 2018. The detrital input and removal treatment (DIRT) network: insights into soil carbon stabilization. Science of the Total Environment 640–641, 1112–1120. https://doi.org/10.1016/j.scit....
 
37.
Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627. https://doi.org/ 10.1126/science.1097396.
 
38.
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, J.-P., 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42, S3‒S15. https://doi.org/10.1016/j.ejso....
 
39.
Loranger, G., Bandyopadhyaya, I., Razaka, B., Ponge, J.-F., 2001. Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biology and Biochemistry 33, 381–393. https://doi.org/10.1016/S0038-....
 
40.
Madej, G., Barczyk, G., Gdawiec, M., 2011. Evaluation of Soil Biological Quality Index (QBS-ar): its sensitivity and usefulness in the post-mining chronosequence – preliminary research. Polish Journal of Environmental Studies 20(5), 1367–1372.
 
41.
Maraun, M., Scheu, S., 2000. The structure of oribatid mites communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23(3), 374–383. https://doi.org/10.1111/j.1600....
 
42.
Mazzoncini, M., Canali, S., Giovannetti, M., Castagnoli, M., Tittarelli, F., Antichi, D., Nannelli, R., Cristiani, C., Bàrberi, P., 2010. Comparison of organic and conventional stockless arable systems: a multidisciplinary approach to soil quality evaluation. Applied Soil Ecology 44, 124–132. https://doi.org/10.1016/j.apso....
 
43.
Menta, C., Conti, F.D., Pinto, S., Bodini, A., 2018. Soil biological quality index QBS-ar: 15 years of application at global scale. Ecological Indicators 85, 773–780. https://doi.org/10.1016/j.ecol....
 
44.
Menta, C., Leoni, A., Gardi, C., Conti, F., 2011. Are grasslands important habitats for soil microarthropod conservation? Biodiversity Conservation 20, 1073‒1087. https://doi.org/10.1007/s10531....
 
45.
Menta, C., Ramelli, S., 2020. Soil health and arthropods: from complex system to worthwhile investigation. Insects 11, 54. https://doi.org/10.3390/insect....
 
46.
Minor, M.A., 2008. Protura in native and exotic forests in the North Island of New Zealand. New Zealand Journal of Zoology 35, 271–279. https://doi.org/10.1080/030142....
 
47.
MIPAF, 2000. Osservatorio nazionale pedologico e per la qualità del suolo, International Society of Soil Science, Società Italiana della Scienza del Suolo. Metodi di analisi chimica del suolo, F. Angeli, Milano.
 
48.
Moço, M.K.S., Gama-Rodrigues, E.F., Gama-Rodrigues, A.C., Machado, R.C.R., Baligar, V.C., 2010. Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Applied Soil Ecology 46, 347–354. https://doi.org/10.1016/j.apso....
 
49.
Murphy, B.W., 2014. Soil Organic Matter and Soil Function. Review of the Literature and Underlying Data. Department of the Environment, Canberra, Australia.
 
50.
Nelson, D.W, Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. [In:] Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America Book Series no. 5, 961‒1010. https://doi.org/10.2136/sssabo....
 
51.
Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular 939, U.S. Gov. Print. Office, Washington, DC.
 
52.
Ondrasek, G., Bakić Begić, H., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., Rengel, Z., 2019. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Science of The Total Environment 658, 1559–1573. https://doi.org/10.1016/j.scit....
 
53.
Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J-L., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F.M.S., Ramirez, K.S., Scheu, S., Singh, B.K., Six, J., van der Putten, W.H., Wall, D.H. (Eds.), 2016. Global soil biodiversity atlas. European Commission, Publications Office of the European Union, Luxembourg.
 
54.
Paoletti, M.G., 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems & Environment 74, 137‒155. https://doi.org/10.1016/S0167-....
 
55.
Paoletti, M.G., Hassall, M., 1999. Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems & Environment 74, 157‒165. https://doi.org/10.1016/S0167-....
 
56.
Parisi, V., 2001. La qualità biologica del suolo. Un metodo basato sui microartropodi. Acta Naturalia de l’Ateneo Parmense 37, 105‒114.
 
57.
Parisi, V., Menta, C., 2008. Microarthropods of the soil: convergence phenomena and evaluation of soil quality using QBS-ar and QBS-c. Fresenius Environmental Bulletin 17(8b), 1170‒1174.
 
58.
Parisi, V., Menta, C., Gardi, C., Jacomini, C., Mozzanica, E., 2005. Microarthropod community as a tool to asses soil quality and biodiversity: a new approach in Italy. Agriculture, Ecosystems & Environment 105, 323‒333. https://doi.org/10.1016/j.agee....
 
59.
Paustian, K., Andrén, O., Janzen, H.H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van Noordwijk, M., Woomer, P.L., 1997. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management 13, 230‒244. https://doi.org/10.1111/j.1475....
 
60.
Piper, F.I., Baeza, G., Zúñiga-Feest, A., Fajardo, A., 2013. Soil nitrogen, and not phosphorus, promotes cluster-root formation in a South American Proteaceae, Embothrium coccineum. American Journal of Botany 100, 2328–2338. https://doi.org/10.3732/ajb.13....
 
61.
Potapov, A.M., Goncharov, A.A., Semenina, E.E., Yu Korotkevich, A., Tsurikov, S.M., Rozanova, O.L., Anichkin, A.E., Zuev, A.G., Samoylova E.S., Semenyuk, I.I., Yevdokimov, I.V., Tiunov, A.V., 2017 Arthropods in the subsoil: abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology 82, 88–97. https://doi.org/10.1016/j.ejso....
 
62.
Rendoš, M., Raschmanová, N., Kováč, L., Miklisová, D., Mock, A., Ľuptáčik, P., 2016. Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. European Journal of Soil Biology 75, 180‒187. https://doi.org/10.1016/j.ejso....
 
63.
Ruiz Sinoga, J.D., Pariente, S., Romero Diaz, A., Martinez Murillo, J.F., 2011. Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain). Catena 94, 17‒25. https://doi.org/10.1016/j.cate....
 
64.
Salmon, S., Artuso, N., Frizzera, L., Zampedri, R., 2008. Relationships between soil fauna communities and humus forms: response to forest dynamics and solar radiation. Soil Biology and Biochemistry 40, 1707–1715. https://doi.org/10.1016/j.soil....
 
65.
Santorufo, L., Van Gestel, C.A.M., Rocco, A., Misto, G., 2012. Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution 161, 57–63. https://doi.org/10.1016/j.envp....
 
66.
Sapkota, T.B., Mazzoncini, M., Bàrberi, P., Antichi, D., Silvestri, N., 2012. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agronomy for Sustainable Development 32, 853–863. https://doi.org/10.1007/s13593....
 
67.
Staley, J.T., Hodgson, C.J., Mortimer, S.R., Morecroft, M.D., Masters, G.J., Brown, V.K., Taylor, M.E., 2007. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. European Journal of Soil Biology 43, 189–198. https://doi.org/10.1016/j.ejso....
 
68.
Tabaglio, V., Gavazzi, C., Menta, C., 2009. Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize. Soil and Tillage Research 105, 135‒142. https://doi.org/10.1016/j.stil....
 
69.
Tan, Z., Lal, R.,. Smeck, N.E, Calhoun, F.G., Slater, B.K., Parkinson, B., Gehring, R.M., 2004. Taxonomic and geographic distribution of soil organic carbon pools in Ohio. Soil Science Society of America Journal 68, 1896‒1904. https://doi.org/10.2136/sssaj2....
 
70.
Van Straalen, N.M., 2004. The use of soil invertebrates in ecological survey of contaminated soils. [In:] Doelman, P., Eijsackers, H.J.P. (Eds.), Vital soil function, value and properties. Elsevier, Amsterdam, 159‒194.
 
71.
Visioli, G., Menta, C., Gardi, C., Conti, F.D., 2013. Metal toxicity and biodiversity in serpentine soils: Application of bioassay tests and microarthropod index. Chemosphere 90 (3), 1267‒1273. https://doi.org/10.1016/j.chem....
 
72.
Wardle, D.A., 2002. Linking the aboveground and belowground components. Monographs in Population Biology. Princeton University Press.
 
73.
Wissuwa, J., Salamon, J.-A., Frank, T., 2013. Oribatida (Acari) in grassy arable fallows are more affected by soil properties than habitat age and plant species. European Journal of Soil Biology 59, 8–14. https://doi.org/10.1016/j.ejso....
 
74.
Wolters, V., 2001. Biodiversity of soils animals and its function. European Journal of Soil Biology 37, 221‒227. https://doi.org/10.1016/S1164-....
 
75.
Wu, P., Liu, X., Liu, S., Wang, J., Wang, Y., 2014. Composition and spatio-temporal variation of soil microarthropods in the biodiversity hotspot of northern Hengduan Mountains, China. European Journal of Soil Biology 62, 30–38. https://doi.org/10.1016/j.ejso....
 
76.
Zucca, C., Canu, A., Previtali, F., 2010. Soil degradation by land use change in an agropastoral area in Sardinia (Italy). Catena 83, 46–54. https://doi.org/10.1016/j.cate....
 
77.
website 1: https://climatologia.meteochil... (accessed 10.06.2020).
 
eISSN:2300-4975
ISSN:2300-4967