PL EN
ORIGINAL PAPER
Micromorphological, submicromorphological and chemical indicators of pedogenesis in Spolic Technosols developed at historical mining and metallurgical sites in the Tatra Mountains, southern Poland
 
More details
Hide details
1
Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Department of Soil Science, Nowoursynowska Str. 159, building no. 37, 02-776 Warsaw, Poland
 
 
Submission date: 2025-08-09
 
 
Final revision date: 2025-09-24
 
 
Acceptance date: 2025-09-26
 
 
Online publication date: 2025-09-26
 
 
Publication date: 2025-09-26
 
 
Corresponding author
Magdalena Tarnawczyk   

Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Department of Soil Science, Nowoursynowska Str. 159, building no. 37, 02-776 Warsaw, Poland
 
 
Soil Sci. Ann., 2025, 76(3)211370
 
KEYWORDS
ABSTRACT
Spolic Technosols developed from mine and metallurgical wastes in areas of historical mining and smelting activities undergo natural weathering, soil-forming and biological processes. This study presents (1) micromorphological and submicromorphological features using optical microscopy and scanning electron microscopy, as well as (2) chemical characteristics based on selective extractions of pedogenic Fe, Al, Mn and Si in Technosols from the Tatra Mountains, southern Poland, to identify key pedogenic processes in these soils. This approach provides insight into the complex pedogenesis of Spolic Technosols in an alpine environment influenced by past industrial activity. Thirteen soil profiles were analysed, divided into three groups: (I) Technosols formed from mine wastes comprising Fe- and Mn-ore-bearing carbonate rocks (limestones and dolomites), (II) Technosols developed from mine wastes derived from polymetallic ore-bearing igneous and metamorphic rocks (granite, gneiss), and (III) Technosols containing wastes from smelting activity (e.g. metallurgical slags). Soil thin section analysis revealed the following microscale evidences of initial soil formation: (1) formation of Fe oxide pseudomorphs due to sulphide weathering; (2) formation of pedogenic structure; (3) formation of pedogenic carbonate coatings in soils developed from mine wastes composed of carbonate rocks; (4) formation of pedogenic Fe and Mn oxide coatings in acidic soils developed from mine wastes composed of crystalline rocks (granite, gneiss); (5) formation of pedogenic sulphate coatings in soils containing metallurgical wastes, and (6) bioturbations (e.g. root channels and biogenic channels filled with a material reworked by soil animals). Micromorphological observations also showed that metallurgical slags in Technosols can serve as a habitat for soil fauna (most likely nematodes or enchytraeids). Selective extractions of pedogenic Fe, Al, Mn, and Si showed (1) the release of oxalate-extractable Mn in soils developed from Mn-bearing ore mine wastes, (2) a slight mobilisation of oxalate-extractable Fe and Al in acidic Technosols developed from aluminosilicate parent material, and (3) the release of oxalate-extractable Al and Si in Technosols containing metallurgical slags. These results indicate that technogenic parent materials undergo weathering, which will most likely consequently transform the mineral composition of the studied Technosols in the future. This study contributes to expanding knowledge of Technosols and their potential ecological functions in mountain regions. It also provides insights into soil development in areas of historical mining and metallurgical activities in an alpine environment of the Tatra Mountains.
REFERENCES (94)
1.
Acosta, J.A., Martinez-Martinez, S., Faz, A., Mourik, J.M. Van, Arocena, J.M., 2011. Micromorphological and chemical approaches to understand changes in ecological functions of metal-impacted soils under various land uses. Applied and Environmental Soil Science 2011, 521329. https://doi.org/10.1155/2011/5....
 
2.
Allory, V., Séré, G., Ouvrard, S., 2022. A meta‐analysis of carbon content and stocks in Technosols and identification of the main governing factors. European Journal of Soil Science 73(1), e13141. https://doi.org/10.1111/ejss.1....
 
3.
Arocena, J., Mourik, J.M., Schilder, M., Faz Cano, A., 2010. Initial soil development under pioneer plant species in metal mine waste deposits. Restoration Ecology 18, 244–252. https://doi.org/10.1111/j.1526....
 
4.
Badin, A.L., Méderel, G., Béchet, B., Borschneck, D., Delolme, C., 2009. Study of the aggregation of the surface layer of Technosols from stormwater infiltration basins using grain size analyses with laser diffractometry. Geoderma 153, 163–171. https://doi.org/10.1016/j.geod....
 
5.
Castillo Corzo, M., Peña Rodríguez, V., Manrique Nugent, M., Villarreyes Peña, E., Byrne, P., Gonzalez, J.C., Patiño Camargo, G., Barnes, C.H.W., Sánchez Ortiz, J.F., Saldaña Tovar, J., De Los Santos Valladares, L., 2025. Potentially toxic elements and radionuclides contamination in soils from the vicinity of an ancient mercury mine in Huancavelica, Peru. Soil Science Annual 76(2), 204389. https://doi.org/10.37501/soils....
 
6.
Charzyński, P., Hulisz, P., Bednarek, R.M. (Eds.), 2013. Technogenic soils of Poland. Torun, Polish Society of Soil Science.
 
7.
Colombini, G., Auclerc, A., Watteau, F., 2020. Techno-moder: A proposal for a new morpho-functional humus form developing on Technosols revealed by micromorphology. Geoderma 375, 114526. https://doi.org/10.1016/j.geod....
 
8.
Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second Edition. Wiley‐VCH Verlag.
 
9.
Díaz-Ortega, J., Rivera-Uria, Y., López-Mendoza, E., Sedov, S., Romero, F., Solleiro-Rebolledo, E., Martínez-Jardines, L.G., 2024. Development of sustainable hydromorphic Technosols within artificial wetlands in mining landscapes: the effects of wastewater and hydrothermal geological materials. Journal of Soils and Sediments 24, 2948–2962. https://doi.org/10.1007/s11368....
 
10.
Domínguez-Haydar, Y., Castañeda, C., Rodríguez-Ochoa, R., Jiménez, J.J., 2018. Assessment of soil fauna footprints at a rehabilitated coal mine using micromorphology and near infrared spectroscopy (NIRS). Geoderma 313, 135–145. https://doi.org/10.1016/j.geod....
 
11.
Drewnik, M., 2008. Geomorfologiczne uwarunkowania rozwoju pokrywy glebowej w obszarach górskich na przykładzie Tatr. Wydawnictwo UJ. (in Polish).
 
12.
Drewnik, M., Felisiak, I., Jerzykowska, I., Magiera, J., 2008. The Tatra Mts: rocks, landforms, weathering and soils. Geotourism/Geoturystyka 2(13), 51–74. https://doi.org/10.7494/geotou....
 
13.
Eren, M., Kadir, S., Zucca, C., Akşit, İ., Kaya, Z., Kapur, S., 2014. Pedogenic manganese oxide coatings (calcium buserite) on fracture surfaces in Tortonian (Upper Miocene) red mudstones, southern Turkey. Catena 116, 149-156. https://doi.org/10.1016/j.cate....
 
14.
Eswaran, H., Raghu Mohan, G., 1973. The microfabric of petroplinthite. Soil Science Society of America Proceedings 37, 79–82. https://doi.org/10.2136/sssaj1....
 
15.
Fine, P., Singer, M.J., 1989. Contribution of ferrimagnetic minerals to oxalate- and dithionite-extractable iron. Soil Science Society of America Journal 53, 191–196.
 
16.
Gradziński, M., Jach, R., Stworzewicz, E., 2001. Origin of calcite-cemented Holocene slope breccias from the Długa Valley (the Western Tatra Mountains). Annales Societatis Geologorum Poloniae 71(2), 105–113.
 
17.
Grünewald, G., Kaiser, K., Jahn, R., 2007. Alteration of secondary minerals along a time series in young alkaline soils derived from carbonatic wastes of soda production. Catena 71(3), 487–496. https://doi.org/10.1016/j.cate....
 
18.
Hayes, S.M., Root, R.A., Perdrial, N., Maier, R.M., Chorover, J., 2014. Surficial weathering of iron sulfide mine tailings under semi-arid climate. Geochimica et Cosmochimica Acta 141, 240–257. https://doi.org/10.1016/j.gca.....
 
19.
Hedde, M., Nahmani, J., Séré, G., Auclerc, A., Cortet, J., 2019. Early colonization of constructed Technosols by macro-invertebrates. Journal of Soils and Sediments 19, 3193–3203. https://doi.org/10.1007/s11368....
 
20.
Hess, M., 1996. Climate. [In:] Mirek, Z., Głowaciński, Z., Klimek, K., Piękoś-Mirkowa, H. (Eds.), Nature of the Tatra National Park. Tatrzański Park Narodowy, Kraków-Zakopane, pp. 53–68.
 
21.
Huot, H., Faure, P., Biache, C., Lorgeoux, C., Simonnot, M. O., Morel, J. L., 2014a. A Technosol as archives of organic matter related to past industrial activities. Science of the total Environment, 487, 389–398. https://doi.org/10.1016/j.scit....
 
22.
Huot, H., Simonnot, M.O., Watteau, F., Marion, P., Yvon, J., De Donato, P., Morel, J.L., 2014b. Early transformation and transfer processes in a Technosol developing on iron industry deposits. European Journal of Soil Science 65, 470–484. https://doi.org/10.1111/ejss.1....
 
23.
Huot, H., Simonnot, M.O., Morel, J.L., 2015. Pedogenetic trends in soils formed in technogenic parent materials. Soil Science 180(4/5), 182–192. https://doi.org/10.1097/SS.000....
 
24.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
25.
Jangorzo, N.S., Watteau, F., Schwartz, C., 2013. Evolution of the pore structure of constructed Technosol during early pedogenesis quantified by image analysis. Geoderma 207‒208, 180‒192. https://doi.org/10.1016/j.geod....
 
26.
Jangorzo, N.S., Schwartz, C., Watteau, F., 2014. Image analysis of soil thin sections for a non-destructive quantification of aggregation in the early stages of pedogenesis. European Journal of Soil Science 65(4), 485‒498. https://doi.org/10.1111/ejss.1....
 
27.
Jost, H., 1962. O górnictwie i hutnictwie w Tatrach Polskich. Wyd. Nauk.-Techn. Warszawa, pp. 186. (in Polish).
 
28.
Jost, H., 2004. Dzieje górnictwa i hutnictwa w Tatrach Polskich. Zakopane. (in Polish).
 
29.
Kabała, C., Greinert, A., Charzyński, P., Uzarowicz, Ł., 2020. Technogenic soils – soils of the year 2020 in Poland. Concept, properties and classification of technogenic soils in Poland. Soil Science Annual 71(4), 267–280. https://doi.org/10.37501/soils....
 
30.
Kalita, P., Dutta, M., Karmakar, R. M., Dutta, S., Deka, B., 2019. Pedogenic distribution of iron and aluminium under different land uses in Golaghat district of Assam. Journal of Pharmacognosy and Phytochemistry 8(3), 2554–2561.
 
31.
Krettek, A., Rennert, T., 2021. Mobilisation of Al, Fe, and DOM from topsoil during simulated early Podzol development and subsequent DOM adsorption on model minerals. Scientific Reports 11, 19741. https://doi.org/10.1038/s41598....
 
32.
Kierczak, J., Pietranik, A., Piatak, N.M. 2021. Weathering of Slags. [In:] Piatak N.M., Ettler, V. (Eds.), Metallurgical Slags: Environmental Geochemistry and Resource Potential, The Royal Society of Chemistry, pp. 125–150.
 
33.
Kierczak, J., Potysz, A., Pietranik, A., Tyszka, R., Modelska, M., Néel, C., Ettler, V., Mihaljevič, M., 2013. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). Journal of Geochemical Exploration 124, 183–194. https://doi.org/10.1016/j.gexp....
 
34.
Klimaszewski, M., 1996. Geomorphology. [In:] Mirek, Z., Głowaciński, Z., Klimek, K., Piękoś-Mirkowa, H. (Eds.), Nature of the Tatra National Park. Tatrzański Park Narodowy, Kraków-Zakopane, pp. 97–124.
 
35.
Konstantinov, A., Novoselov, A., Konstantinova, E., Loiko, S., Kurasova, A., Minkina, T., 2020. Composition and properties of soils developed within the ash disposal areas originated from peat combustion (Tyumen, Russia). Soil Science Annual 71(1), 3–14. https://doi.org/10.37501/soils....
 
36.
Kotański, Z., 1971. Przewodnik geologiczny po Tatrach. Wydawnictwo Geologiczne, Warszawa. (in Polish).
 
37.
Kowalska, J.B., Zaleski, T., Mazurek, R., 2020. Micromorphological features of soils formed on calcium carbonate-rich slope deposits in the Polish Carpathians. Journal of Mountain Science 17(6), 1310–1332. https://doi.org/10.1007/s11629....
 
38.
Liberak, M., 1927. Górnictwo i hutnictwo w Tatrach Polskich. Wierchy 5, 13–30. (in Polish).
 
39.
Mayanna, S., Peacock, C.L., Schäffner, F., Grawundera, A., Mertena, D., Kothec, E., Büchela, G., 2015. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chemical Geology 402, 6–17. https://doi.org/10.1016/j.chem....
 
40.
McKeague, J.A., Day, J.H., 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science 46(1), 13–22. https://doi.org/10.4141/cjss66....
 
41.
McKenzie, R.M. 1989. Manganese oxides and hydroxides. [In:] Dixon, J.B., Weed, S.B. (Eds.), Minerals in Soil Environments, Soil Science Society of America. Madison, WI, pp. 439–461.
 
42.
Mehra, O.P., Jackson, M.L., 1958. Iron oxide removal from soils and clay by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7, 317–327. https://doi.org/10.1346/CCMN.1....
 
43.
Miechówka, A., Ciarkowska, K., 1998. Mikromorfologiczne formy próchnicy tatrzańskich rędzin próchnicznych i butwinowych. Zeszyty Problemowe Postępów Nauk Rolniczych 464, 161–168. (in Polish).
 
44.
Mirek, Z., 1996. Antropogenic threats and changes of the nature. [In:] Mirek, Z., Głowaciński, Z., Klimek, K., Piękoś-Mirkowa, H. (Eds.), Nature of the Tatra National Park. Tatrzański Park Narodowy, Kraków-Zakopane, pp. 595–618.
 
45.
Néel, C., Bril, H., Courtin-Nomade, A., Dutreuil, J.P., 2003. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma 111, 1–20. https://doi.org/10.1016/S0016-....
 
46.
Ortega, J., Sedov, S., Romero, F., Jardines, L., Solleiro-Rebolledo, E., 2022. Chronosequence of Technosols at the Peña Colorada mine in Colima, Mexico: a short-term remediation alternative. Journal of Soils and Sediments 22, 942–956. https://doi.org/10.1007/s11368....
 
47.
Osika, R., 1987. Budowa geologiczna Polski, t. IV Złoża surowców mineralnych. Wydawnictwo Geologiczne, Warszawa. (in Polish).
 
48.
Ovsyannikova, S.V., Seredina, V.P., Ufimtsev, V.I., 2024. Technosols as a resource for restoration of soil and vegetation cover during disturbed land reclamation in the forest-steppe zone. BIO Web of Conferences 128, 00026. https://doi.org/10.1051/biocon....
 
49.
Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods. Springer Berlin, Heidelberg.
 
50.
Passendorfer, E., 1996. Geology. [In:] Mirek, Z., Głowaciński, Z., Klimek, K., Piękoś-Mirkowa, H. (Eds.), Nature of the Tatra National Park. Tatrzański Park Narodowy, Kraków-Zakopane, pp. 69–96.
 
51.
Piękoś-Mirkowa, H., Mirek, Z., 1996. Zbiorowiska roślinne, in: Mirek, Z., Głowaciński, Z., Klimek, K., Piękoś-Mirkowa, H. (Eds.), Przyroda Tatrzańskiego Parku Narodowego. Tatrzański Park Narodowy, Kraków-Zakopane, pp. 237–274.
 
52.
Potysz, A., Kierczak, J., Grybos, M., Pędziwiatr, A., van Hullebusch, E.D., 2018. Weathering of historical copper slags in dynamic experimental system with rhizosphere-like organic acids. Journal of Environmental Management 222, 325-337. https://doi.org/10.1016/j.jenv....
 
53.
Radwańska-Paryska, Z., Paryski, W.H., 1995. Wielka Encyklopedia Tatrzańska. Wyd. Górskie, Poronin, pp. 1555.
 
54.
Rączkowska, Z.J., 2019. Human impact in the Tatra Mountains. Cuadernos de investigación geográfica / Geographical Research Letters 45(1), 219–244.
 
55.
Ruiz, F., Andrade, G.R.P., Sartor, L.R., Santos, J.C.B. dos, Souza Júnior, V.S. de, Ferreira, T.O., 2022. The rhizosphere of tropical grasses as driver of soil weathering in embryonic Technosols (SE-Brazil). Catena 208, 105764. https://doi.org/10.1016/j.cate....
 
56.
Santini, T.C., Fey, M.V., 2016. Assessment of Technosol formation and in situ remediation in capped alkaline tailings. Catena 136, 17–29. https://doi.org/10.1016/j.cate....
 
57.
Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung und Bodenkunde 105, 194–202.
 
58.
Séré, G., Schwartz, C., Ouvrard, S., Renat, J.C., Watteau, F., Villemin, G., Morel, J.L., 2010. Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments 10, 1246–1254. https://doi.org/10.1007/s11368....
 
59.
Soil Science Division Staff, 2017. Soil Survey Manual. Ditzler, C., Scheffe, K., Monger H.C. (Eds.) USDA Handbook 18. Washington, D.C.
 
60.
Stoops, G., 2021. Guidelines for analysis and description of soil and regolith thin sections. John Wiley & Sons, 184 p.
 
61.
Stoops, G., Marcelino, V., Mees, F., 2018. Micromorphological features and their relation to processes and classification: general guidelines and Overview. [In:] Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, pp. 15–35.
 
62.
Sullivan, L.A., Koppi, A.J., 1992. Manganese oxide accumulations associated with some soil structural pores. I. Morphology, composition and genesis. Australian Journal of Soil Research 30(4), 409–427. https://doi.org/10.1071/SR9920....
 
63.
Swęd, M., Uzarowicz, Ł., Duczmal-Czernikiewicz, A., Kwasowski, W., Pędziwiatr, A., Siepak, M., Niedzielski, P., 2022. Forms of metal (loid) s in soils derived from historical calamine mining waste and tailings of the Olkusz Zn–Pb ore district, southern Poland: A combined pedological, geochemical and mineralogical approach. Applied Geochemistry 139, 105218. https://doi.org/10.1016/j.apge....
 
64.
Tarnawczyk, M., Uzarowicz, Ł., Kwasowski, W., Górka-Kostrubiec, B., Pędziwiatr, A., 2024. Soil-forming factors controlling Technosol formation in historical mining and metallurgical sites in the high-alpine environment of the Tatra Mountains, southern Poland. Catena 247, 108521. https://doi.org/10.1016/j.cate....
 
65.
Tarnawczyk, M., Uzarowicz, Ł., Kwasowski, W., Pędziwiatr, A., Martín-Peinado, F.J., 2025. Geochemical features of Technosols developed in historical mining and metallurgical sites in the Tatra Mountains, southern Poland: total contents and BCR fractionation of selected trace elements. Minerals 15, 988. https://doi.org/10.3390/min150....
 
66.
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin, London. https://doi.org/10.1007/978-94....
 
67.
Uzarowicz, Ł., 2013. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 197, 137–150. https://doi.org/10.1016/j.geod....
 
68.
Uzarowicz, Ł., Skiba, S., 2011. Technogenic soils developed on mine spoils containing iron sulphides: Mineral transformations as an indicator of pedogenesis. Geoderma 163(1–2), 95–108. https://doi.org/10.1016/j.geod....
 
69.
Uzarowicz, Ł., Zagórski, Z., Mendak, E., Bartmiński, P., Szara, E., Kondras, M., Oktaba, L., Turek, A., Rogoziński, R., 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. Catena 157C, 75–89. https://doi.org/10.1016/j.cate....
 
70.
Uzarowicz, Ł., Kwasowski, W., Śpiewak, O., Świtoniak, M., 2018a. Indicators of pedogenesis of Technosols developed in an ash settling pond at the Bełchatów thermal power station (central Poland). Soil Science Annual 69(1), 49–59. https://doi.org/10.2478/ssa-20....
 
71.
Uzarowicz, Ł., Skiba, M., Leue, M., Zagórski, Z., Gąsiński, A., Trzciński, J., 2018b. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution. Catena 162, 255–269. https://doi.org/10.1016/j.cate....
 
72.
Uzarowicz, Ł., Charzyński, P., Greinert, A., Hulisz, P., Kabała, C., Kusza, G., Kwasowski, W., Pędziwiatr, A., 2020a. Studies of technogenic soils in Poland: past, present, and future perspectives. Soil Science Annual 71(4), 281–299. https://doi.org/10.37501/soils....
 
73.
Uzarowicz, Ł., Wolińska, A., Błońska, E., Szafranek-Nakonieczna, A., Kuźniar, A., Słodczyk, Z., Kwasowski, W., 2020b. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Applied Soil Ecology 156, 103699. https://doi.org/10.1016/j.apso....
 
74.
Uzarowicz, Ł., Swęd, M., Kwasowski, W., Pędziwiatr, A., Kaczmarek, D., Koprowska, D., Górka-Kostrubiec, B., Pawłowicz, E., Murach, D., 2024. Initial pedogenic processes, mineral and chemical transformations and mobility of trace elements in Technosols on dumps of the former copper mines in Miedziana Góra and Miedzianka, the Świętokrzyskie Mts., south-central Poland. Catena 245, 108293. https://doi.org/10.1016/j.cate....
 
75.
Uzarowicz, Ł., Kwasowski, W., Lasota, J., Błońska, E., Górka-Kostrubiec, B., Tarnawczyk, M., Murach, D., Gilewska, M., Gryczan, W., Pawłowicz, E., Jankowski, P., 2025. Vegetation cover as an important factor affecting the properties and evolution of Spolic Technosols: A case study from a dump of the abandoned iron ore mine in central Poland. Catena 254, 108906. https://doi.org/10.1016/j.cate....
 
76.
Van Oorschot, I.H.M., Dekkers, M.J., 1999. Dissolution behaviour of fine-grained magnetite and maghemite in the citrate-bicarbonate-dithionite extraction method. Earth and Planetary Science Letters 167(3-4), 283-295.
 
77.
Van Ranst, E., Wilson, M.A., Righi, D., 2018. Spodic Materials. [In:] Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths (Second Edition). Elsevier, pp. 633–662. https://doi.org/10.1016/B978-0....
 
78.
Van Reeuwijk, L.P., 2002. Procedures for soil analysis. Technical Paper 9. ISRIC, Wageningen.
 
79.
Verrecchia, E.P., Trombino, L., 2021. A Visual Atlas for Soil Micromorphologists. Springer, Cham.
 
80.
Walker, A., 1983. The effects of magnetite on oxalate- and dithionite-extractable iron. Soil Science Society of America Journal 47, 1022–1026.
 
81.
Warchulski, R., Szczuka, M., Kupczak, K., 2020. Reconstruction of 16th–17th century lead smelting processes on the basis of slag properties: a case study from Sławków, Poland. Minerals 10(11), 1039. https://doi.org/10.3390/min101....
 
82.
Warzyński, H., Sosnowska, A., Harasimiuk, A., 2018. Effect of variable content of organic matter and carbonates on results of determination of granulometric composition by means of Casagrande’s areometric method in modification by Prószyński. Soil Science Annual 69(1), 39–48. https://doi.org/10.2478/ssa-20....
 
83.
Watteau, F., Séré, G., Huot, H., Begin, J.C., Schwartz, C., Qiu, R., Morel, J.L., 2017. Micropedology of SUITMAs. [In:] Levin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzyński, P., Shaw, R.K., IUSS Working Group SUITMA (Eds.), Soils within Cities, Global approaches to their sustainable management: Stuttgart, Germany, Catena Soil Sciences, Schweizerbart Science Publishers, pp. 84‒92.
 
84.
Watteau, F., Huot, H., Morel, J.-L., Rees, F., Schwartz, C., Séré, G., 2018. Micropedology to reveal pedogenetic processes in Technosols. Spanish Journal of Soil Science 8(2), 148–163. https://doi.org/10.3232/SJSS.2....
 
85.
Watteau, F., Jangorzo, N. S., Schwartz, C., 2019. A micromorphological analysis for quantifying structure descriptors in a young constructed Technosol. Boletín de la Sociedad Geológica Mexicana 71(1), 11–20. https://doi.org/10.18268/bsgm2....
 
86.
Watteau, F., Morel, J. L., Liu, C., Tang, Y., Huot, H., 2025. Technosol micromorphology reveals the early pedogenesis of abandoned rare earth element mining sites undergoing reclamation in south China. Minerals 15(5), 514. https://doi.org/10.3390/min150....
 
87.
Wątocki, W., 1950. Żyły mineralne na Ornaku w Tatrach Zachodnich. Annales Societatis Geologorum Poloniae 20(1-2), 11–60. (in Polish).
 
88.
Woś, B., Tahsin Karimi Nezhad, M., Mustafa, A., Pietrzykowski, M., Frouz, J., 2023. Soil carbon storage in unreclaimed post mining sites estimated by a chronosequence approach and comparison with historical data. Catena 220A, 106664. https://doi.org/10.1016/j.cate....
 
89.
Zaiets, O., Poch, R.M., 2016. Micromorphology of organic matter and humus in Mediterranean mountain soils. Geoderma 272, 83–92. https://doi.org/10.1016/j.geod....
 
90.
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews 157, 1–17. https://doi.org/10.1016/j.ears....
 
91.
Zanuzzi, A., Arocena, J.M., Van Mourik, J.M., Cano, A.F., 2009. Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma 154, 69–75. https://doi.org/10.1016/j.geod....
 
92.
Zasoński, S., Niemyska-Łukaszuk, J., 1977. Soil types of Mt. Zgorzelisko based on chemical and micromorphological properties, Roczniki Gleboznawcze – Soil Science Annual 28(1), 243–261.
 
93.
Zikeli, S., Jahn, R., Kastler, M., 2002. Initial soil development in lignite ash landfills and settling ponds in Saxony‐Anhalt, Germany. Journal of Plant Nutrition and Soil Science 165(4), 530–536. https://doi.org/10.1002/1522-2....
 
94.
Zwoliński, S., 1984. Wpływ hut zakopiańskich na lasy tatrzańskie. Parki Narodowe i Rezerwaty Przyrody 5(1), 43–50. (in Polish).
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top