PL EN
ORIGINAL PAPER
Origin, properties and agricultural value of alluvial soils in the Vistula and Pasłęka deltas, north Poland
 
More details
Hide details
1
Wydział Rolnictwa i Leśnictwa, Katedra Gleboznawstwa i Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Gleboznawstwa i Mikrobilogii, Pl. Łódzki 3, pok. 105, 10-727 Olsztyn, Polska
 
2
Wydział Rolnictwa i Leśnictwa, Katedra Gleboznawstwa i Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Gleboznawstwa i Mikrobiologii, Pl. Łódzki 3, pok. 105, 10-727 Olsztyn, Polska
 
 
Submission date: 2022-06-09
 
 
Final revision date: 2022-10-13
 
 
Acceptance date: 2022-12-11
 
 
Online publication date: 2022-12-12
 
 
Publication date: 2022-12-21
 
 
Corresponding author
Mirosław Orzechowski   

Wydział Rolnictwa i Leśnictwa, Katedra Gleboznawstwa i Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Gleboznawstwa i Mikrobilogii, Pl. Łódzki 3, pok. 105, 10-727 Olsztyn, Pl. łódzki 3, Olsztyn, Polska
 
 
Soil Sci. Ann., 2022, 73(3)157350
 
KEYWORDS
ABSTRACT
Abstract: The aim of this study was to investigate the sorptive and air-water properties of alluvial soils of the Vistula and Pasłęka deltas, typologically differentiated in terms of habitat conditions, and to determine their agricultural values. Typical ordinary alluvial soils, humic ordinary alluvial soils, and typical brown alluvial soils were developed from loam, sandy loam and silty clay loam and were located in the oldest part of Żuławy, i.e. ‘high’ Żuławy (from + 2.5 to + 10.0 m a.s.l.). Typical chernozemic alluvial soils and gleyic chernozemic alluvial soils were formed mainly from silt clay, silt loam and clay loam. They were located mainly in the area of ‘transitional’ Żuławy (from 0.0 to + 2.5 m a.s.l.), ‘low’ Żuławy (less than 0.0 m a.s.l.) and in the Pasłęka delta. Chernozemic alluvial soils had greater cation exchange capacity, including base cations, than brown and ordinary alluvial soils. The least favorable air-water relationships were found in ordinary alluvial soils. The volume of macropores in arable horizons of these soils ranged from 3.1% to 4.5%. The ratio of macro- to meso- and micropores was wide: 1: 4.0-5.5: 3.6-5.4, while in chernozemic alluvial soils it was 1: 1.8-2.9: 2.5-3.8. The most favorable air-water relationships were found in arable horizons of typical brown alluvial soils, in which the macro- to meso- and micropores ratio was 1.0: 1.9: 0.7. Ordinary and brown alluvial soils were of ‘high’ Żuławy were properly or periodically excessively moist, and they are mainly classified as good and medium good arable soils, class RIIIa and RIIIb, of the good wheat soil-agricultural complex. The chernozemic alluvial soils of ‘depressive’ Żuławy were periodically excessively moist, periodically wet, or permanently wet in the depressive parts of the land. These soils are mainly classified as arable soils medium good, class RIIIb and medium value arable soils, classes RIVa and RIVb, of good wheat soil-agricultural complex and strong forage soil-agricultural complex. The alluvial soils particularly rich in fine silt and clay fractions (over 60%) in depressive areas should be used as permanent grasslands. The conducted research has shown that the soil conditions in the delta areas of the Vistula and Pasłęka river mouths are closely related to the origin and land hypsometry, which differentiates the water conditions, the grain size of soil formations, their type and thickness.
REFERENCES (37)
1.
Brandyk, T., 1988. Charakterystyczne zapasy wody w niektórych madach delty Wisły. Roczniki Gleboznawcze – Soil Science Annual 29(1), 29–40. (in Polish with English abstract).
 
2.
Chojnicki, J., 2002. Procesy glebotwórcze w madach środkowej doliny Wisły i Żuław. Fundacja Rozwój SGGW, Warszawa, 83 pp. (in Polish with English abstract).
 
3.
Dąbkowska-Naskręt, H., 1990. Skład i właściwości fizykochemiczne wybranych gleb aluwialnych Doliny Dolnej Wisły z uwzględnieniem ich cech diagnostycznych. ATR Bydgoszcz, Rozprawy 38, 117 pp. (in Polish).
 
4.
Dezső, J., Czigány, S., Nagy, G., Pirkhoffer, E., Słowik, M., Lóczy, D., 2019. Monitoring soil moisture dynamics in multilayered Fluvisols. Bulletin of Geography. Physical Geography Series 16, 131–146. http://dx.doi.org/10.2478/bgeo....
 
5.
Domżał, H., 1977. Zagęszczenie fazy stałej i jego rola w kształtowaniu wodno – powietrznych właściwości gleb. Rozprawy Naukowe 50, AR Lublin, 42 pp. (in Polish).
 
6.
Gajić, B., Kresović, B., Pejić, B., Tapanarova, A., Dugalić, G., Životić, L., Tolimir, M., 2020. Some physical properties of long-term irrigated fluvisols of valley the river Beli Drim in Klina (Serbia). Zemljište i Biljka, 69, 21–35. https://doi.org/10.5937/ZemBil....
 
7.
Hulisz, P., Michalski, A., Dąbrowski, M., Kusza, G., Łęczyński, L., 2015. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut (northern Poland). Soil Science Annual 66(2), 67–74. https://doi.org/10.1515/ssa-20....
 
8.
IUSS Working Group WRB.World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports; FAO: Rome, Italy, 2015; p. 182.
 
9.
Jarvis, M.G., Macney, D., 1979. Soil survey applications. Technical Monograph, Haperden 13, 24–34.
 
10.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(1), 71–97. https://doi.org/10.2478/ssa-20....
 
11.
Kawałko, D., Jezierski, P., Kabała, C., 2021. Morphology and physicochemical properties of alluvial soils in riparian forests after river regulation. Forests 12, 329. https://doi.org/10.3390/f12030....
 
12.
Kercheva, M., Sokołowska, Z., Hajnos, M., Skic, K., Shishkov, T., 2017. Physical parameters of Fluvisols on flooded and non-flooded terraces. Intstitute of Agrophysics, 31, 73–82. https://doi.org/10.1515/intag-....
 
13.
Kholodov, V.N., 2010. Lithogenesis types and their modern interpretations. Lithology Mineral Resources 45(6), 519-531.
 
14.
Kondracki, J., 2000. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, 440 pp. (in Polish).
 
15.
Kowalik, P., 1968. Problemy wielkości natlenienia gleb żuławskich. Pierwsze Naukowe Seminarium Żuławskie, A–3, Gdańsk, 1–11. (in Polish).
 
16.
Laskowski, S., 1986. Powstanie i rozwój oraz właściwości gleb aluwialnych doliny środkowej Odry. AR Wrocław, 68 pp. (in Polish).
 
17.
Ligęza, S., 2016. Zmienność współczesnych mad puławskiego odcinka Wisły. Rozprawy Naukowe UP Lublin, 385, 131 pp. (in Polish).
 
18.
Łabaz, B., Kabała, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126. https://doi.org/10.1016/j.cate....
 
19.
Niedźwiecki, E., 1971. Różnicowanie się wodnych i powietrznych właściwości mad ciężkich w dolinie rzeki Iny zależnie od sposobu ich użytkowania. Zeszyty Naukowe WSR w Szczecinie, 37, 187–206. (in Polish).
 
20.
Orzechowski, M., Smólczyński, S., 1998. Degradacja fizyczna mad żuławskich. Zeszyty Problemowe Postępów Nauk Rolniczych 460, 375-384 (in Polish).
 
21.
Orzechowski, M., Smólczyński, S., Sowiński, P., 2004. Zasobność mad żuławskich w makroelementy ogólne i przyswajalne. Annales UMCS, Lublin, Sec. E, 59(3), 1065–1071.
 
22.
Orzechowski, M., Smólczyński, S., Sowiński, P., 2005. Właściwości sorpcyjne gleb aluwialnych Żuław Wiślanych. Roczniki Gleboznawcze – Soil Science Annual 56(1/2), 119–127. (in Polish with English abstract).
 
23.
Orzechowski, M., Smólczyński, S., 2010. Struktura i wodoodporność agregatów gleb aluwialnych w krajobrazie deltowym. Roczniki Gleboznawcze – Soil Science Annual 61(3), 87-99. (in Polish with English abstract).
 
24.
Orzechowski, M., Smólczyński, S., Kalisz, B., Długosz, J., Sowiński, P., 2020. Chemical and mineralogical composition of the Holocene soil sediments in north-eastern Poland. Journal of Elementology 25(2), 471–485. https://doi.org/10.5601/jelem.....
 
25.
Piaścik, H., Orzechowski, M., Smólczyński S., Maćkiewicz, J., 1991. Charakterystyka siedlisk rolniczych Żuław Wiślanych w aspekcie bonitacji i użytkowania. RPBR 28. Rozpoznanie i ochrona ekosystemów. Falenty/ Elbląg – Olsztyn. Cz. I, 11-20. (in Polish).
 
26.
Piaścik, H., Orzechowski, M., Smólczyński, S., 1998. Air, water and retaining properties of alluvial soils in delta landscape. Polish Journal of Soil Science31(2), 1-7.
 
27.
Piaścik, H., Orzechowski, M., Smólczyński, S., 2000. Siedliska glebowe delty Wisły. Roczniki AR Poznań 317, Rolnictwo 56, 115-124. (in Polish).
 
28.
PTG, 2009. Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze – Soil Science Annual 60(2), 5–16. (in Polish with English abstract).
 
29.
Robakiewicz, M., 2010. Vistula river mouth – history and recent problems. Archives of Hydro-Engineering and Environmental Mechanics 57(2), 155–166.
 
30.
Skuodiene, R., Katutis, K., Nekrosiene, R., Repsiene, R., Karcauskiene, D., 2016. Effects of soil properties and humidity regimes on semi-natural meadow productivity. Acta Agriculturae Scandinavica, Sec. B, Soil and Plant Science, 66(8), 653–663. https://doi.org/10.1080/090647....
 
31.
Urzędowa tabela klas gruntów, 2013. Rozporządzenie Rady Ministrów z 12 września 2012 r. (Dz. U. z 14 listopada 2012 r.). (in Polish).
 
32.
Walczak, R., Ostrowski, J., Witkowska -Walczak, B., Sławiński, C., 2002. Hydrofizyczne charakterystyki mineralnych gleb ornych Polski. Acta Agrophysica 79(5), 64 pp. (in Polish).
 
33.
Wang, N., Li, G., Xu, J., Qiao, L., Dada, O.A., Zhou, C., 2015. The marine dynamics and changing trend of the modern Yellow River mouth. Journal of Ocean University of China (Oceanic and Coastal Sea Research) 14(3), 433–445. https://doi.org/10.1007/s11802....
 
34.
Wang, Z.F., Cao, X.D., Li, Q.J., Liu, Y.L., 2019. The impact of surface wave on the sediment erosion and deposition near the Yellow River Mouth, China. Applied Ecology and Environmental Research 17(6), 14911-14926. https://doi.org/10.15666/aeer/....
 
35.
Witek, T., 1965. Gleby Żuław Wiślanych. Pamiętniki Puławskie 18, 157-266. (in Polish).
 
36.
Van Reeuwijk, LP. (Ed.)., 2002. Procedures for soil analysis. Technical Paper 9. ISRIC, FAO Wageningen, 119 pp.
 
37.
Zawadzki, 1973. Laboratoryjne oznaczanie zdolności retencyjnych utworów glebowych. Wiadomości IMUZ 11(2), 11–31. (in Polish).
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top