Physical, water and redox properties of vertisols of the Sępopol Plain in north-eastern Poland
More details
Hide details
Wydział Kształtowania Środowiska i Rolnictwa, Katedra Gleboznawstwa i Rekultywacji Gruntów, Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Gleboznawstwa i Rekultywacji Gruntów, Pl. Łódzki 3, pok. 105, 10-727 Olsztyn, Polska
Submission date: 2020-03-25
Acceptance date: 2020-06-23
Online publication date: 2020-09-09
Publication date: 2020-09-09
Corresponding author
Mirosław Orzechowski   

Wydział Kształtowania Środowiska i Rolnictwa, Katedra Gleboznawstwa i Rekultywacji Gruntów, Uniwersytet Warmińsko-Mazurski w Olsztynie, Katedra Gleboznawstwa i Rekultywacji Gruntów, Pl. Łódzki 3, pok. 105, 10-727 Olsztyn, Pl. Łódzki 3, 10-727, Olsztyn, Polska
Soil Sci. Ann., 2020, 71(3), 185-193
Abstract: Vertisols occurring in the Sępopol Plain in north-eastern Poland are characterized by high natural fertility. They belong to the group of soils with high clay content, which show the ability of periodic shrinking and swelling of clay minerals. As a result of variable moisture conditions, deep cracks and sliding surfaces are formed on the surface of the soil aggregates. The purpose of this research was to determine the chemical, physical, air-water and redox properties of vertisols developed from glaciolimnic sediments of the Weichselian glaciation, and having textures of clay (C), loam (L) and heavy clay (HC). The studied soils had high field water capacity (pF 2.0) and high content of water unavailable to plants (pF 4.2), as well as low volume of air pores. A significant positive correlation was found between the amount of clay and the volume of water unavailable to plants (pF 4.2), and a negative correlation between the amount of clay and content of water available to plants (AWC), including water readily available to plants (RAWC). The distribution of soil pores was unfavourable, and the ratio of macropores to mesopores to micropores in humic horizons was 1:2.7–5.1:1.5–5.4. The studied vertisols had low values of redox potential (Eh) and oxygen diffusion rate (ODR). The values of the Eh were above 300 mV, a threshold value for oxidised and reduced soil, only in surface horizons.
Ahmad, N., 1996. Occurrence and distribution of Vertisols. Developments in soil science, 24, 1–41.
Castellini, M., Fornaro, F., Garofalo, P., Giglio, L., Rinaldi, M., Ventrella, D., Vitti, C., Vonella, A.V., 2019. Effectsof no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water 11, 484.
DeCarlo, K.F., Caylor, K.K., 2019. Biophysical effects on soil crack morphology in faunally active dryland vertisol. Geoderma 334, 134–145.
Długosz, J., Orzechowski, M., Kobierski, M., Smólczyński, S., Zamorski, R., 2009. Clay minerals from Weichselian glaciolimnic sediments of the Sępopolska Plain (NE Poland). Geologica Carpathica. 60(3), 263-267.
Dudek, M., Waroszewski, J., Kabała, C., Łabaz, B., 2019. Vertisols properties and classification in relation to parent material differentiation near Strzelin (SW Poland). Soil Science Annual 70 (2), 158-169.
Favre, F., Boivin, P., Wopereis, M.C.S., 1997. Water movement and soil swelling in a dry, cracked Vertisol. Geoderma 78(1), 113-123.
Gliński, J., Stępniewska, Z., 1986. An evaluation of soil redox resistance to reduction processes. Polish Journal of Soil Science 19, 15–19.
IUSS Working Group WRB, 2015. World reference base for soil resources 2014, update 2015. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps. Food and Agriculture Organization of the Unit Nations, Rome, 190 pp.
Jarvis, M.G., Macney, D., 1979. Soil survey applications. Technical Monograph., Haperden 13, 24–34.
Kabala, C., Plonka, T., Przekora, A., 2015. Vertic properties and gilgai-related subsurface features in soils of south-western Poland. Catena, 128, 95–107.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual, 70(2), 71–97.
Kishné, A.S., Morgan, C.L.S., Miller, W.L., 2009. Vertisol crack extent associated with gigai and soil moisture in the Texas Gulf Coast Prairie. Soil Science Society of American Journal 73, 1221-1230.
Kovda, I.V., Wilding, L.P., 2004. Vertisols: problems of classification, evolution and spatial self-organization. Eurasian Soil Science 37(12), 1341–1351.
Körnke, B., 1930. Letztglazialer Eisabbau und Flussgeschichte im nördlichen Ostpreeussen und seiner Nachbargebiten. Zeitschrift der Deutschen Geologischen Gesellschaft 82, 14–33.
Łabaz, B., Kabała, C., 2014. Origin, properties and classification of black earths in Poland. Roczniki Gleboznawcze – Soil Science Annual 65(2), 80–90.
Miller, W.L., Kishne, A.S., Morgan, C.L., 2010. Vertisol morphology, classification, and seasonal cracking patterns in the Texas Gulf coast prairie. Soil Horizons 51(1), 10–16.
Mocek, A., Owczarzak, W., Tabaczynski, R., 2009. Particle-size distribution of soils and.
mineralogical composition of clay fraction in Gniew Phaeozems. Roczniki Gleboznawcze –Soil Science Annual 60(3), 123–132.
Olszewski, Z., 1956. Heavy Ciechanów soils. Roczniki Nauk Rolniczych 75-D, 269-316.
Orzechowski, M., Smólczyński, S., 2010. Air-water properties of alluvial and deluvial soils in various landscapes of north-eastern Poland. Polish Journal of Soil Science 43(2), 103–113.
Orzechowski, M., Smólczyński, S., Długosz, J., Kalisz, B., Kobierski, M. 2018. Content and distribution of iron forms in soils formed from glaciolimnic sediments, in NE Poland. Journal of Elementology 23(2), 729–744. DOI: 10.5601/jelem.2017.22.4.1413
Polish Soil Classification, 2011. Roczniki Gleboznawcze – Soil Science Annual 62(3): 1–193. (in Polish with English summary).
Prusinkiewicz, Z., 2001. Gniew smolnice (vertisols) - properties, origin, systematics.
Roczniki Gleboznawcze – Soil Science Annual 52(1/2), 5–21.
Reeve, M.J., Hall, D.G.M., Bullock, P., 1980. The effect of soil composition and environmental factors on the shrinkage of some clayey British soils. Journal of Soil Science 31, 429-442.
Rawls, W.J., Gish, T.J, Brakensiek, D.L., 1991. Estimating soil water retention from soil.
physical properties and characteristics. Advances in Soil Science 16, 213–234.
Roszko, L., 1968. Recession of the last ice sheet from Poland. Prace Geograficzne 74. PWN Warszawa, 65–110.
Stępniewska, Z., 1988. Redox properties of mineral soils of Poland. Problemy Agrofizyki 56, 108 pp.
Stępniewski, W., 1980. Dependence of oxygen diffusion and compactness on soil compaction. Rozprawa habilitacyjna. Zakład Agrofizyki PAN Lublin, 54 pp.
Suchecki, S., 2010. Ecoclimate of north-eastern Poland. ALGRAF s.c., 148 pp.
Tietje, O., Tapkenhinrichs, M. 1993. Evaluation of pedo-transfer functions. Soil Science Society of America Journal, 57, 1088–1095.
Uggla, H., Witek, T., 1956. Black earths of Kętrzyn. Zeszyty Naukowe WSR w Olsztynie 3, 69–108.
Van Reeuwijk, LP. (Ed.). 2002. Procedures for soil analysis. Technical Paper 9. ISRIC, FAO, Wageningen.
Walczak, R., Ostrowski, J., Witkowska-Walczak, B., Sławiński, C., 2002. Hydrophysical characteristics of mineral Polish soils. Acta Agrophysica, 79(5), 64 pp.
Wilding, L.P., 2004. Advancement in the knowledge base of Vertisols genesis, classification,.
distribution and management. Revista Cientifica Agropecuaria 8, 45–54.
Zawadzki, 1973. Laboratory analyses of soil water retention. Wiadomości IMUZ, 11(2), 11–31.
Journals System - logo
Scroll to top