PL EN
ORIGINAL PAPER
Relationships between selected phenolic compounds and microbial abundance in grassland soils in the Obra River valley: a preliminary study
 
More details
Hide details
1
, Polska
 
 
Submission date: 2025-01-29
 
 
Final revision date: 2025-04-24
 
 
Acceptance date: 2025-05-23
 
 
Online publication date: 2025-05-23
 
 
Publication date: 2025-05-23
 
 
Corresponding author
Justyna Mencel   

Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-665, Poznań, Polska
 
 
Soil Sci. Ann., 2025, 76(2)205498
 
KEYWORDS
ABSTRACT
The aim of the study was to evaluate the relationships between selected phenolic compounds and microbial abundance in grassland soils. The objects of the study were topsoils (0¬–20 cm) from under grasslands located along the Obra River (Wielkopolska Lowland, central Poland). The field survey was conducted in September 2022. Five vegetation syntaxonomic units were selected in the study area: Molinietum caeruleae, Alopecuretum pratensis, Arrhenatheretum elatioris, Lolio-Cynosuretum, and community Poa pratensis-Festuca rubra. A one-way ANOVA test for pH showed statistically significant differences between grasslands (pHH2O p=0.000 and pHKCl p=0.000). The abundance of heterotrophic bacteria (p=0.000), actinobacteria (p=0.001), and fungi (p=0.014) were also traits that significantly differentiated grassland vegetation units. One-way ANOVA test showed that of all the phenolic compounds analyzed, only two were found to be significant: vanillic acid (p=0.003) and catechin (p=0.002). Our research indicates a positive correlation of actinobacteria with cinnamic and caffeic acid, heterotrophic bacteria with p-coumaric and ferulic acid and catechin, and fungi with gallic acid and catechin. In addition, taking into account statistically significant features, it can be concluded that Molinietum caeruleae shows a different structure compared to the other vegetation units, the Arrhenatheretum elatioris and Lolio-Cynosuretum group are similar, while com. Poa pratensis-Festuca rubra and Alopecuretum pratensis show different structures from the others. Environmental research is increasingly focusing on enhancing soil organic carbon accumulation. Understanding the relationship between phenolic compounds and microorganisms in grassland soils is crucial in this context. Proper grassland management is a key element of environmental protection.
REFERENCES (77)
1.
Adamczyk, B., Kitunen, V., Smolander, A., 2008. Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biology and Fertility of Soils 45, 55–64. https://doi.org/10.1007/s00374....
 
2.
Adom, K.K., Sorrells, M.E., Liu, R.H., 2003. Phytochemical Profiles and Antioxidant Activity of Wheat Varieties. Journal of Agricultural and Food Chemistry 51, 7825–7834. https://doi.org/10.1021/jf0304....
 
3.
Babenko, L.M., Smirnov, O.E., Romanenko, K.O., Trunova, O.K., Kosakіvskа, I.V., 2019. Phenolic compounds in plants: biogenesis and functions. The Ukrainian Biochemical Journal 91, 5–18. https://doi.org/10.15407/ubj91....
 
4.
Bao, L., Liu, Y., Ding, Y., Shang, J., Wei, Y., Tan, Y., Zi, F., 2022. Interactions Between Phenolic Acids and Microorganisms in Rhizospheric Soil From Continuous Cropping of Panax notoginseng. Frontiers in Microbiology 13, 791603. https://doi.org/10.3389/fmicb.....
 
5.
Barakat, A., Bagniewska-Zadworna, A., Frost, C.J., Carlson, J.E., 2010. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biology 10, 100. https://doi.org/10.1186/1471-2....
 
6.
Bell, T.H., Henry, H.A.L., 2011. Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system. Pedobiologia 54, 141–146. https://doi.org/10.1016/j.pedo....
 
7.
Bhonwong, A., Stout, M.J., Attajarusit, J., Tantasawat, P., 2009. Defensive Role of Tomato Polyphenol Oxidases against Cotton Bollworm (Helicoverpa armigera) and Beet Armyworm (Spodoptera exigua). Journal of Chemical Ecology 35, 28–38. https://doi.org/10.1007/s10886....
 
8.
Borges, A., Ferreira, C., Saavedra, M.J., Simões, M., 2013. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance 19, 256–265. https://doi.org/10.1089/mdr.20....
 
9.
Cecchi, A.M., Koskinen, W.C., Cheng, H.H., Haider, K., 2004. Sorption?desorption of phenolic acids as affected by soil properties. Biology and Fertility of Soils 39, 235–242. https://doi.org/10.1007/s00374....
 
10.
Chatterton, S., Punja, Z.K., 2009. Chitinase and β-1,3-glucanase enzyme production by the mycoparasite Clonostachys rosea f. catenulata against fungal plant pathogens. Canadian Journal of Microbiology 55, 356–367. https://doi.org/10.1139/W08-15....
 
11.
Chen, L.-C., Guan, X., Wang, Q.-K., Yang, Q.-P., Zhang, W.-D., Wang, S.-L., 2018. Effects of phenolic acids on soil nitrogen mineralization over successive rotations in Chinese fir plantations. Journal of Forestry Research 31, 303–311. https://doi.org/10.1007/s11676....
 
12.
Chen, Z., Zhang, X., Huang, Y., Shi, Z., Yao, H., 2025. Mechanisms of plant phenolic compounds affecting soil nitrogen transformation. Alexandria Engineering Journal 120, 173–184. https://doi.org/10.1016/j.aej.....
 
13.
Chi, Y., Song, S., Xiong, K., 2023. Effects of different grassland use patterns on soil bacterial communities in the karst desertification areas. Frontiers in Microbiology 14, 1208971. https://doi.org/10.3389/fmicb.....
 
14.
Clemensen, A.K., Provenza, F.D., Hendrickson, J.R., Grusak, M.A., 2020. Ecological Implications of Plant Secondary Metabolites - Phytochemical Diversity Can Enhance Agricultural Sustainability. Frontiers in Sustainable Food Systems 4, 547826. https://doi.org/10.3389/fsufs.....
 
15.
Clocchiatti, A., Hannula, S.E., Van Den Berg, M., Hundscheid, M.P.J., De Boer, W., 2021. Evaluation of Phenolic Root Exudates as Stimulants of Saptrophic Fungi in the Rhizosphere. Frontiers in Microbiology 12, 644046. https://doi.org/10.3389/fmicb.....
 
16.
Cueva, C., Moreno-Arribas, M.V., Martín-Álvarez, P.J., Bills, G., Vicente, M.F., Basilio, A., Rivas, C.L., Requena, T., Rodríguez, J.M., Bartolomé, B., 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology 161, 372–382. https://doi.org/10.1016/j.resm....
 
17.
Dębska, B., Banach-Szott, M., 2010. Identification of phenolic compounds in forest soils. Polish Journal of Soil Science 43, 141–150.
 
18.
Eze, S., Palmer, S.M., Chapman, P.J., 2018. Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. Journal of Environmental Management 223, 74–84. https://doi.org/10.1016/j.jenv....
 
19.
Fenner, N., Freeman, C., Reynolds, B., 2005. Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: implications for carbon cycling. Soil Biology and Biochemistry 37, 1277–1287. https://doi.org/10.1016/j.soil....
 
20.
Gałązka, A., 2013. Przemiany związków fenolowych a rola amoniakoliazy L-fenyloalaninowej (PAL) w indukcji mechanizmów obronnych rośliny (Conversion of phenolic compounds and the role of L-phenylalanine ammonia lyase (PAL) in the induction of plant defense mechanisms). Polish Journal of Agronomy 15, 83–88.
 
21.
Gąsecka, M., Krzymińska-Bródka, A., Magdziak, Z., Czuchaj, P., Bykowska, J., 2023. Phenolic Compounds and Organic Acid Composition of Syringa vulgaris L. Flowers and Infusions. Molecules 28, 5159. https://doi.org/10.3390/molecu....
 
22.
Golonko, A., Kalinowska, M., Świsłocka, R., Świderski, G., Lewandowski, W., 2015. Applications of phenolic compounds and their derivatives in industry and medicine. Civil and Environmental Engineering 6.
 
23.
Grabińska−Łoniewska, A., 1999. Laboratory exercises in general microbiology. Warsaw Technical University, Warsaw.
 
24.
Grządziel, J., 2017. Functional Redundancy of Soil Microbiota – Does More Always Mean Better? Polish Journal of Soil Science 50, 75. https://doi.org/10.17951/pjss.....
 
25.
Hättenschwiler, S., Vitousek, P.M., 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution 15, 238–243. https://doi.org/10.1016/S0169-....
 
26.
Horvat, D., Šimić, G., Drezner, G., Lalić, A., Ledenčan, T., Tucak, M., Plavšić, H., Andrić, L., Zdunić, Z., 2020. Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants 9, 527. https://doi.org/10.3390/antiox....
 
27.
Hu, H., Tang, C., Rengel, Z., 2005. Influence of phenolic acids on phosphorus mobilisation in acidic and calcareous soils. Plant and Soil 268, 173–180. https://doi.org/10.1007/s11104....
 
28.
Johnson, M.T.J., Smith, S.D., Rausher, M.D., 2009. Plant sex and the evolution of plant defenses against herbivores. Proceedings of the National Academy of Sciences 106, 18079–18084. https://doi.org/10.1073/pnas.0....
 
29.
Kahkeshani, N. et al., 2019. Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iranian Journal of Basic Medical Sciences 22. https://doi.org/10.22038/ijbms....
 
30.
Kołacz, B., 2020. Znaczenie materii organicznej w glebie oraz działania agrotechniczne wspomagające jej utrzymanie (The importance of organic matter in soil and agrotechnical measures supporting its maintenance). Centrum Doradztwa Rolniczego w Brwinowie. Oddział w Radomiu, Radom.
 
31.
Kovaleva, N.O., Kovalev, I.V., 2009. Transformation of lignin in surface and buried soils of mountainous landscapes. Eurasian Soil Science 42, 1270–1281. https://doi.org/10.1134/S10642....
 
32.
Kulbat, K., 2016. The role of phenolic compounds in plant resistance. Biotechnology and Food Sciences 80, 97–108.
 
33.
Kurasiak-Popowska, D., Graczyk, M., Przybylska-Balcerek, A., Stuper-Szablewska, K., Szwajkowska-Michałek, L., 2022. An Analysis of Variability in the Content of Phenolic Acids and Flavonoids in Camelina Seeds Depending on Weather Conditions, Functional Form, and Genotypes. Molecules 27, 3364. https://doi.org/10.3390/molecu....
 
34.
Li, C., Deng, Y., Wang, J., Ruan, W., Wang, S., Kong, W., 2023. Effects of p-Hydroxyphenylacetic Acid and p-Hydroxybenzoic Acid on Soil Bacterial and Fungal Communities. Sustainability 15, 9285. https://doi.org/10.3390/su1512....
 
35.
Lobiuc, A., Pavăl, N.-E., Mangalagiu, I.I., Gheorghiță, R., Teliban, G.-C., Amăriucăi-Mantu, D., Stoleru, V., 2023. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 28, 1114. https://doi.org/10.3390/molecu....
 
36.
Lou, Z., Wang, H., Rao, S., Sun, J., Ma, C., Li, J., 2012. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 25, 550–554. https://doi.org/10.1016/j.food....
 
37.
Lu, Z.-X. et al., 2022. Effects of different vegetation restoration on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China. Forest Ecology and Management 508, 120002. https://doi.org/10.1016/j.fore....
 
38.
Ma, H.-L., Gao, R., Yin, Y.-F., Yang, Y.-S., 2016. Effects of leaf litter tannin on soil ammonium and nitrate content in two different forest soils of mount Wuyi, China. Toxicological & Environmental Chemistry 98, 395–409. https://doi.org/10.1080/027722....
 
39.
Ma, W., Tang, S., Dengzeng, Z., Zhang, D., Zhang, T., Ma, X., 2022. Root exudates contribute to belowground ecosystem hotspots: A review. Frontiers in Microbiology 13, 937940. https://doi.org/10.3389/fmicb.....
 
40.
Ma, X., Ren, B., Yu, J., Wang, J., Bai, L., Li, J., Li, D., Meng, M., 2023. Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China. Frontiers in Microbiology 14, 1205574. https://doi.org/10.3389/fmicb.....
 
41.
Macias-Benitez, S., Garcia-Martinez, A.M., Caballero Jimenez, P., Gonzalez, J.M., Tejada Moral, M., Parrado Rubio, J., 2020. Rhizospheric Organic Acids as Biostimulants: Monitoring Feedbacks on Soil Microorganisms and Biochemical Properties. Frontiers in Plant Science 11, 633. https://doi.org/10.3389/fpls.2....
 
42.
Mäkelä, M.R., Marinović, M., Nousiainen, P., Liwanag, A.J.M., Benoit, I., Sipilä, J., Hatakka, A., De Vries, R.P., Hildén, K.S., 2015. Aromatic Metabolism of Filamentous Fungi in Relation to the Presence of Aromatic Compounds in Plant Biomass. Advances in Applied Microbiology 91, 63–137. https://doi.org/10.1016/bs.aam....
 
43.
Maron, P.-A. et al., 2018. High Microbial Diversity Promotes Soil Ecosystem Functioning. Applied and Environmental Microbiology 84, e02738-17. https://doi.org/10.1128/AEM.02....
 
44.
Martin, J.P., 1950. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Science 69, 215−232.
 
45.
McGivern, B.B. et al., 2021. Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nature Communications 12, 2466. https://doi.org/10.1038/s41467....
 
46.
Mencel, J., Klarzyńska, A., Piernik, A., Mocek-Płóciniak, A., 2024. Differentiation of grassland vegetation in relation to the physicochemical properties of peat soils in the Obra River valley, western Poland. Soil Science Annual 75, 190113. https://doi.org/10.37501/soils....
 
47.
Min, K., Freeman, C., Kang, H., Choi, S.-U., 2015. The Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment. BioMed Research International 2015, 1–11. https://doi.org/10.1155/2015/8....
 
48.
Misra, D., Dutta, W., Jha, G., Ray, P., 2023. Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus. Agronomy 13, 280. https://doi.org/10.3390/agrono....
 
49.
Moreira, X., Abdala-Roberts, L., Hidalgo-Galvez, M.D., Vázquez-González, C., Pérez-Ramos, I.M., 2020. Micro-climatic effects on plant phenolics at the community level in a Mediterranean savanna. Scientific Reports 10, 14757. https://doi.org/10.1038/s41598....
 
50.
Morones-Esquivel, M.M., Núñez-Núñez, C.M., Hernández-Mendoza, J.L., Proal-Nájera, J.B., 2022. Bacterial Communities in Effluents Rich in Phenol and Their Potential in Bioremediation: Kinetic Modeling. International Journal of Environmental Research and Public Health 19, 14222. https://doi.org/10.3390/ijerph....
 
51.
Pietrzak, S., Hołaj-Krzak, J.T., 2022. The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. Journal of Water and Land Development 68–76. https://doi.org/10.24425/jwld.....
 
52.
Pikuła, D., 2019. Praktyki zapobiegające stratom węgla organicznego z gleby (Practices to prevent organic carbon loss from soil). Studia i Raporty IUNG-PIB 59, 77–91. https://doi.org/10.26114/SIR.I....
 
53.
Pollock, J.L., Kogan, L.A., Thorpe, A.S., Holben, W.E., 2011. (±)-Catechin, A Root Exudate of the Invasive Centaurea Stoebe Lam. (Spotted Knapweed) Exhibits Bacteriostatic Activity Against Multiple Soil Bacterial Populations. Journal of Chemical Ecology 37, 1044–1053. https://doi.org/10.1007/s10886....
 
54.
Polowy, K., Molińska-Glura, M., 2023. Data Mining in the Analysis of Tree Harvester Performance Based on Automatically Collected Data. Forests 14, 165. https://doi.org/10.3390/f14010....
 
55.
Polyak, Y.M., Sukcharevich, V.I., 2019. Allelopathic Interactions between Plants and Microorganisms in Soil Ecosystems. Biology Bulletin Reviews 9, 562–574. https://doi.org/10.1134/S20790....
 
56.
Pumphrey, G.M., Madsen, E.L., 2008. Field-Based Stable Isotope Probing Reveals the Identities of Benzoic Acid-Metabolizing Microorganisms and Their In Situ Growth in Agricultural Soil. Applied and Environmental Microbiology 74, 4111–4118. https://doi.org/10.1128/AEM.00....
 
57.
Roux, X.L., Recous, S., Attard, E., 2011. Soil microbial diversity in grasslands and its importance for grassland functioning and services., in: Lemaire, G., Hodgson, J., Chabbi, A. (Eds.), Grassland Productivity and Ecosystem Services. CABI, UK, pp. 158–165. https://doi.org/10.1079/978184....
 
58.
Sądej, W., Żołnowski, A.C., Marczuk, O., 2016. Content of phenolic compounds in soils originating from two long-term fertilization experiments. Archives of Environmental Protection 42, 104–113. https://doi.org/10.1515/aep-20....
 
59.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56. https://doi.org/10.1038/nature....
 
60.
Sies, H., Jones, D.P., 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21, 363–383. https://doi.org/10.1038/s41580....
 
61.
Sinsabaugh, R.L., 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry 42, 391–404. https://doi.org/10.1016/j.soil....
 
62.
Sugiyama, A., Yazaki, K., 2012. Root Exudates of Legume Plants and Their Involvement in Interactions with Soil Microbes, in: Vivanco, J.M., Baluška, F. (Eds.), Secretions and Exudates in Biological Systems, Signaling and Communication in Plants. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 27–48. https://doi.org/10.1007/978-3-....
 
63.
Sui, X., Zhang, R., Frey, B., Yang, L., Li, M.-H., Ni, H., 2019. Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang Plain, northeastern China. Scientific Reports 9, 18535. https://doi.org/10.1038/s41598....
 
64.
Sun, W., Li, Q., Qiao, B., Jia, K., Li, C., Zhao, C., 2024. Advances in Plant–Soil Feedback Driven by Root Exudates in Forest Ecosystems. Forests 15, 515. https://doi.org/10.3390/f15030....
 
65.
Suseela, V., Alpert, P., Nakatsu, C.H., Armstrong, A., Tharayil, N., 2016. Plant–soil interactions regulate the identity of soil carbon in invaded ecosystems: implication for legacy effects. Functional Ecology 30, 1227–1238. https://doi.org/10.1111/1365-2....
 
66.
Thorpe, A.S., Callaway, R.M., 2011. Biogeographic differences in the effects of Centaurea stoebe on the soil nitrogen cycle: novel weapons and soil microbes. Biological Invasions 13, 1435–1445. https://doi.org/10.1007/s10530....
 
67.
Usha Rani, P., Jyothsna, Y., 2010. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiologiae Plantarum 32, 695–701. https://doi.org/10.1007/s11738....
 
68.
Wang, J., Zhang, Y., Yan, N., Chen, J., Rittmann, B.E., 2013. Enhanced phenol bioavailability by means of photocatalysis. Biodegradation 24, 597–602. https://doi.org/10.1007/s10532....
 
69.
White, R.A., Freeman, C., Kang, H., 2011. Plant-derived phenolic compounds impair the remediation of acid mine drainage using treatment wetlands. Ecological Engineering 37, 172–175. https://doi.org/10.1016/j.ecol....
 
70.
Wiesmeier, M. et al., 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma 333, 149–162. https://doi.org/10.1016/j.geod....
 
71.
Xin, P., Yulan, Z., Nan, J., Zhenhua, C., Lijun, C., 2024. Neutral soil pH conditions favor the inhibition of phenol on hydrolase activities and soil organic carbon mineralization Peiqi Xin , Yulan Zhang a e , Nan Jiang a c d e , Zhenhua Chen a , Lijun Chen a. European Journal of Soil Biology 121. https://doi.org/10.1016/j.ejso....
 
72.
Yao, H., Bowman, D., Rufty, T., Shi, W., 2009. Interactions between N fertilization, grass clipping addition and pH in turf ecosystems: Implications for soil enzyme activities and organic matter decomposition. Soil Biology and Biochemistry 41, 1425–1432. https://doi.org/10.1016/j.soil....
 
73.
Ziółkowska, A., 2014. Procesy przekształceń roślinności runi łąkowej (Processes of transformation of meadow sward vegetation). Nauka niejedno ma imię 2, 135–144.
 
74.
Ziółkowska, A., 2019. Przemiany związków fenolowych w glebach łąkowych (Transformations of phenolic compounds in meadow soils) (PhD dissertation). Uniwersytet Technologiczno-Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy, Bydgoszcz.
 
75.
Ziółkowska, A., Dębska, B., Banach‑Szott, M., 2020a. Transformations of phenolic compounds in meadow soils. Scientific Reports 10. https://doi.org/10.1038/s41598....
 
76.
Ziółkowska, A., Dębska, B., Banach-Szott, M., 2020b. Content of Phenolic Compounds in Meadow Vegetation and Soil Depending on the Isolation Method. Molecules 25, 5462. https://doi.org/10.3390/molecu....
 
77.
Zwetsloot, M.J., Ucros, J.M., Wickings, K., Wilhelm, R.C., Sparks, J., Buckley, D.H., Bauerle, T.L., 2020. Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biology and Biochemistry 145, 107797. https://doi.org/10.1016/j.soil....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top