PL EN
REVIEW PAPER
Towards sustainable agriculture through synthetic microbial communities: beyond multifunctional roles, integrated applications, and ecological considerations
 
 
More details
Hide details
1
, Japan
 
 
Submission date: 2025-02-14
 
 
Final revision date: 2025-05-13
 
 
Acceptance date: 2025-06-09
 
 
Online publication date: 2025-06-09
 
 
Publication date: 2025-06-09
 
 
Corresponding author
Chanchao Chem   

Laboratory of Microbiology for Water and Environment, Department of Environmental Engineering Science, School of Science and Technology, Gunma University, 1 Chome-5-1 Tenjincho, 376-8515, Kiryu, Japan
 
 
Soil Sci. Ann., 2025, 76(2)206906
 
KEYWORDS
ABSTRACT
Agriculture faces significant challenges, including climate change, resource limitations, and land degradation, threatening food security. Traditional practices reliant on chemical inputs are often unsustainable, emphasizing the need for alternative solutions. Synthetic microbial communities (SynComs) are artificially assembled microbial consortia designed to improve plant health, reduce chemical inputs, and enhance soil fertility, responding to the limitations of monoculture systems and synthetic agrochemicals. SynCom holds the transformative potential to drive sustainable agriculture. These consortia can serve as biofertilizers, improving nutrient cycling and stress tolerance. They are also involved in bioremediation, transforming pollutants into non-toxic products, and converting crop residues into valuable bio-based products. Integrating SynComs into agricultural practices has the potential to address environmental challenges, promote sustainable farming, and provide long-term food security and ecosystem health. However, realizing their full capacity requires interdisciplinary research, supportive policy and incentive structures, and engagement with farmers through participatory research and knowledge transfer.
REFERENCES (148)
1.
Abraham, J., Silambarasan, S., Logeswari, P., 2014. Simultaneous degradation of organophosphorus and organochlorine pesticides by bacterial consortium. Journal of the Taiwan Institute of Chemical Engineers 45 (5), 2590–2596. https://doi.org/10.1016/j.jtic....
 
2.
Afanador-Barajas, L.N., Navarro-Noya, Y.E., Luna-Guido, M.L., Dendooven, L., 2021. Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation. Scientific Reports 11(1), 13092. https://doi.org/10.1038/s41598....
 
3.
Al-Dhabi, N.A., Esmail, G.A., Mohammed Ghilan, A.K., Valan Arasu, M., 2019. Composting of vegetable waste using microbial consortium and biocontrol efficacy of Streptomyces Sp. Al-Dhabi 30 isolated from the Saudi Arabian environment for sustainable agriculture. Sustainability 11(23), 6845. https://doi.org/10.3390/su1123....
 
4.
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., Wang, M. Q., 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9(3), 42. https://doi.org/10.3390/toxics....
 
5.
Alneyadi, A.H., Rauf, M.A., Ashraf, S.S., 2018. Oxidoreductases for the remediation of organic pollutants in water–a critical review. Critical reviews in biotechnology 38(7), 971–988. https://doi.org/10.1080/073885....
 
6.
Anisha, A.P., Pooja, S.S., 2023. A Study of Farmers Awareness Towards Biofertilizers Consumption in Karad District. Journal of Emerging Technologies and Innovative Research 10(12), 792–796.
 
7.
Aswathi, A., Pandey, A., Sukumaran, R.K., 2019. Rapid degradation of the organophosphate pesticide–Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresource technology 292, 122025. https://doi.org/10.1016/j.bior....
 
8.
Bakki, M., Banane, B., Marhane, O., Esmaeel, Q., Hatimi, A., Barka, E.A., Bouizgarne, B., 2024. Phosphate solubilizing Pseudomonas and Bacillus combined with rock phosphates promoting tomato growth and reducing bacterial canker disease. Frontiers in Microbiology 15, 1289466. https://doi.org/10.3389/fmicb.....
 
9.
Baranek, J., Pluskota, M., Rusin, M., Konecka, E., Kaznowski, A., Wiland-Szymańska, J., 2023. Insecticidal activity of Bacillus thuringiensis strains isolated from tropical greenhouses towards Cydia pomonella and Spodoptera exigua larvae. BioControl 68(1), 39–48. https://doi.org/10.1007/s10526....
 
10.
Batista, B.D., Singh, B.K., 2021. Realities and hopes in the application of microbial tools in agriculture. Microbial Biotechnology 14(4), 1258–1268. https://doi.org/10.1111/1751-7....
 
11.
Baweja, P., Kumar, S., Kumar, G., 2020. Fertilizers and pesticides: Their impact on soil health and environment. Soil health 59, 265–285. https://doi.org/10.1007/978-3-....
 
12.
Bhatt, P., Zhou, X., Huang, Y., Zhang, W., Chen, S., 2021. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. Journal of Hazardous Materials 411, 125026. https://doi.org/10.1016/j.jhaz....
 
13.
Bonaterra, A., Badosa, E., Daranas, N., Francés, J., Roselló, G., Montesinos, E., 2022. Bacteria as biological control agents of plant diseases. Microorganisms 10(9), 1759. https://doi.org/10.3390/microo....
 
14.
Brazil - Import Tariffs. (2023, December 4). https://www.trade.gov/country-....
 
15.
Brooks, S.M., Alper, H.S., 2021. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nature Communications 12(1), 1390. https://doi.org/10.1038/s41467....
 
16.
Burman, E., Bengtsson-Palme, J., 2021. Microbial community interactions are sensitive to small changes in temperature. Frontiers in Microbiology 12, 672910. https://doi.org/10.3389/fmicb.....
 
17.
Buryska, T., Babkova, P., Vavra, O., Damborsky, J., Prokop, Z., 2018. A haloalkane dehalogenase from a marine microbial consortium possessing exceptionally broad substrate specificity. Applied and Environmental Microbiology 84(2), e01684-17. https://doi.org/10.1128/AEM.01....
 
18.
Buta, M., Hubeny, J., Zieliński, W., Harnisz, M., Korzeniewska, E., 2021. Sewage sludge in agriculture–the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops–a review. Ecotoxicology and Environmental Safety 214, 112070. https://doi.org/10.1016/j.ecoe....
 
19.
Cao, T., Luo, Y., Shi, M., Tian, X., Kuzyakov, Y., 2023. Microbial interactions for nutrient acquisition in soil: Miners, scavengers, and carriers. Soil Biology and Biochemistry 109215. https://doi.org/10.1016/j.soil....
 
20.
Cappelli, S.L., Domeignoz-Horta, L.A., Loaiza, V., Laine, A.L., 2022. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends in Plant Science 27(7), 674–687. https://doi.org/10.1016/j.tpla....
 
21.
Chaudhary, P., Xu, M., Ahamad, L., Chaudhary, A., Kumar, G., Adeleke, B. S., Abou Fayssal, S., 2023. Application of synthetic consortia for improvement of soil fertility, pollution remediation, and agricultural productivity: a review. Agronomy 13(3), 643. https://doi.org/10.3390/agrono....
 
22.
Cherif, H., Sghaier, I., Hassen, W., Amara, C., Masmoudi, A.S., Cherif, A., Neifar, M., 2022. Halomonas desertis G11, Pseudomonas rhizophila S211 and Oceanobacillus iheyensis E9 as biological control agents against wheat fungal pathogens: PGPB consorcia optimization through mixture design and response surface analysis. International Clinical Pathology Journal 9, 20–28. https://doi.org/10.15406/icpjl....
 
23.
Chiaranunt, P., White, J.F., 2023. Plant beneficial bacteria and their potential applications in vertical farming systems. Plants 12(2), 400. https://doi.org/10.3390/plants....
 
24.
Das, R., Biswas, S., 2022. Influence of Abiotic Stresses on Seed Production and Quality. Seed Biology Updates, 1–25. http://dx.doi.org/10.5772/inte....
 
25.
Dash, P.K., Padhy, S.R., Bhattacharyya, P., Pattanayak, A., Routray, S., Panneerselvam, P., Pathak, H., 2022. Efficient lignin decomposing microbial consortium to hasten rice-straw composting with moderate GHGs fluxes. Waste and Biomass Valorization 13(1), 481–496. https://doi.org/10.1007/s12649....
 
26.
De Souza, R.S.C., Armanhi, J.S.L., Arruda, P., 2020. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Frontiers in Plant Science 11, 553605. https://doi.org/10.3389/fpls.2....
 
27.
Delgado‐Baquerizo, M., Singh, B.K., Liu, Y.R., Sáez‐Sandino, T., Coleine, C., Muñoz‐Rojas, M., Trivedi, P., 2025. Integrating ecological and evolutionary frameworks for SynCom success. New Phytologist. https://doi.org/10.1111/nph.70....
 
28.
De-Lin, L., Huang, S.Y., Ma, C.Y., Zhang, X.Y., Sun, K., Zhang, W., Dai, C., 2024. Seed-borne bacterial synthetic community resists seed pathogenic fungi and promotes plant growth. Journal of Applied Microbiology lxae073. https://doi.org/10.1093/jambio....
 
29.
Denaya, S., Yulianti, R., Pambudi, A., Effendi, Y., 2021. Novel microbial consortium formulation as plant growth promoting bacteria (PGPB) agent. Earth and Environmental Science 637(1), 012030. https://doi.org/10.1088/1755-1....
 
30.
Devi, A.R., Sharma, G.D., Majumdar, P.B., Pandey, P., 2018. A multispecies consortium of bacteria having plant growth promotion and antifungal activities, for the management of Fusarium wilt complex disease in potato (Solanum tuberosum L.). Biocatalysis and agricultural biotechnology 16, 614–624. https://doi.org/10.1016/j.bcab....
 
31.
Devi, N.S.A., Balachandar, D., 2022. Synthetic Microbial Community (SynCom) for Sustainable Agriculture. Indian Journal of Plant Genetic Resources 35(03), 351–354. http://dx.doi.org/10.5958/0976....
 
32.
Devi, R., Kaur, T., Kour, D., Yadav, A.N., 2022a. Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatalysis and Agricultural Biotechnology 43, 102404. https://doi.org/10.1016/j.bcab....
 
33.
Devi, R., Kaur, T., Kour, D., Yadav, A.N., Suman, A., 2022b. Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia 77(10), 2933–2943. https://doi.org/10.1007/s11756....
 
34.
Dhankhar, N., Kumar, J., 2023. Impact of increasing pesticides and fertilizers on human health: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matp....
 
35.
Dobrzyński, J., Kulkova, I., Jakubowska, Z., Wróbel, B., 2025. Non-native PGPB consortium consisting of Pseudomonas sp. G31 and Azotobacter sp. PBC2 promoted winter wheat growth and slightly altered the native bacterial community. Scientific Reports 15(1), 3248. https://doi.org/10.1038/s41598....
 
36.
Drepper, T., Eggert, T., Circolone, F., Heck, A., Krauss, U., Guterl, J.K., Jaeger, K.E., 2007. Reporter proteins for in vivo fluorescence without oxygen. Nature biotechnology 25(4), 443–445. https://doi.org/10.1038/nbt129....
 
37.
Duarah, P., Haldar, D., Patel, A.K., Dong, C.D., Singhania, R.R., Purkait, M.K., 2022. A review on global perspectives of sustainable development in bioenergy generation. Bioresource Technology 348, 126791. https://doi.org/10.1016/j.bior....
 
38.
El Chami, D., Daccache, A., El Moujabber, M., 2020. How can sustainable agriculture increase climate resilience? A systematic review. Sustainability 12(8), 3119. https://doi.org/10.3390/su1208....
 
39.
El Hamss, H., Radouane, N., Belabess, Z., Lahlali, R., 2023. Microbial Consortia: An Approach to Enhance the Effectiveness of Beneficial Soil Microbes. In: Khan, M.R. (eds) Novel Biological and Biotechnological Applications in Plant Nematode Management. Springer, Singapore. (pp. 133–166). https://doi.org/10.1007/978-98....
 
40.
Fang, L. (2018, March 8). Overview of biofertilizer registration in China. ChemLinked Agrochemical. https://agrochemical.chemlinke....
 
41.
Flores-Duarte, N.J., Navarro-Torre, S., Mateos-Naranjo, E., Redondo-Gómez, S., Pajuelo, E., Rodríguez-Llorente, I.D., 2023a. Nodule Synthetic Bacterial Community as Legume Biofertilizer under Abiotic Stress in Estuarine Soils. Plants 12(11), 2083. https://doi.org/10.3390/plants....
 
42.
Flores-Duarte, N.J., Pajuelo, E., Mateos-Naranjo, E., Navarro-Torre, S., Rodríguez-Llorente, I. D., Redondo-Gómez, S., Carrasco López, J.A., 2023b. A Culturomics-Based Bacterial Synthetic Community for Improving Resilience towards Arsenic and Heavy Metals in the Nutraceutical Plant Mesembryanthemum crystallinum. International Journal of Molecular Sciences 24(8), 7003. https://doi.org/10.3390/ijms24....
 
43.
Frascella, A., Sarrocco, S., Lasinio, G.J., Pollice, A., Emiliani, G., Danti, R., Della Rocca, G., 2023. Characterization of Trichoderma species from forest ecosystems by high-throughput phenotypic microarray. Fungal Biology 127(10-11), 1376–1383. https://doi.org/10.1016/j.funb....
 
44.
Furukawa, K., 2018. Microbial degradation of polychlorinated biphenyls (PCBs). In Biodegradation and detoxification of environmental pollutants. CRC Press 33–58. https://doi.org/10.1201/978135....
 
45.
Gonçalves, O.S., Creevey, C.J., Santana, M.F., 2023. Designing a synthetic microbial community through genome metabolic modeling to enhance plant–microbe interaction. Environmental microbiome 18(1), 81. https://doi.org/10.1186/s40793....
 
46.
Goswami, S.K., Kashyap, P.L., Awasthi, S., 2019. Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India. Indian Phytopathology 72, 479–488. https://doi.org/10.1007/s42360....
 
47.
Gu, D., Andreev, K., Dupre, M.E., 2021. Major trends in population growth around the world. China CDC weekly 3(28), 604. https://doi.org/10.46234%2Fccd....
 
48.
Hadayat, A., Zahir, Z.A., Cai, P., Gao, C.H., 2024. Integrated application of synthetic community reduces consumption of herbicide in field Phalaris minor control. Soil Ecology Letters 6(2), 230207. https://doi.org/10.1007/s42832....
 
49.
Hansen, M.L., Denes, Z., Jarmusch, S.A., Wibowo, M., Lozano-Andrade, C.N., Kovacs, A.T., Jelsbak, L., 2023. Resistance towards and biotransformation of Pseudomonas-produced secondary metabolites during community invasion. ISME Journal 2023-06. https://doi.org/10.1093/ismejo....
 
50.
Hao, X., Wang, X., Chen, C., Liu, R., Yin, Y., Yao, J., Liu, X., 2023. Synthetic bacterial communities reshape microbial communities and enhance nutrient supply in desertified land of Northwest China. Applied Soil Ecology 189, 104972. https://doi.org/10.1016/j.apso....
 
51.
Huang, J., Zhao, X., Bürger, M., Chory, J., Wang, X., 2023. The role of ethylene in plant temperature stress response. Trends in plant science 28(7), 808–824. https://doi.org/10.1016/j.tpla....
 
52.
Inda, M.E., Lu, T.K., 2020. Microbes as biosensors. Annual Review of Microbiology 74, 337–359. https://doi.org/10.1146/annure....
 
53.
Jankovska-Bortkevič, E., Katerova, Z., Todorova, D., Jankauskienė, J., Mockevičiūtė, R., Sergiev, I., Jurkonienė, S., 2023. Effects of auxin-type plant growth regulators and cold stress on the endogenous polyamines in pea plants. Horticulturae 9(2), 244. https://doi.org/10.3390/hortic....
 
54.
Jensen, C.U., Rodriguez Guerrero, J.K., Karatzos, S., Olofsson, G., Iversen, S. B., 2017. Fundamentals of Hydrofaction™: Renewable crude oil from woody biomass. Biomass Conversion and Biorefinery 7(4), 495–509. https://doi.org/10.1007/s13399....
 
55.
Jing, J., Garbeva, P., Raaijmakers, J.M., Medema, M.H., 2024. Strategies for tailoring functional microbial synthetic communities. The ISME Journal wrae049. https://doi.org/10.1093/ismejo....
 
56.
Johns, N.I., Blazejewski, T., Gomes, A.L., Wang, H.H., 2016. Principles for designing synthetic microbial communities. Current Opinion in Microbiology 31, 146–153. https://doi.org/10.1016/j.mib.....
 
57.
Kabir, A.H., Baki, M.Z.I., Ahmed, B., Mostofa, M.G., 2024. Current, faltering, and future strategies for advancing microbiome-assisted sustainable agriculture and environmental resilience. New Crops 100013. https://doi.org/10.1016/j.ncro....
 
58.
Karkaria, B.D., Fedorec, A.J., Barnes, C.P., 2021. Automated design of synthetic microbial communities. Nature communications 12(1), 672. https://doi.org/10.1038/s41467....
 
59.
Kaur, S., Egidi, E., Qiu, Z., Macdonald, C.A., Verma, J.P., Trivedi, P., Singh, B.K., 2022. Synthetic community improves crop performance and alters rhizosphere microbial communities. Journal of Sustainable Agriculture and Environment 1(2), 118–131. https://doi.org/10.1002/sae2.1....
 
60.
Kaur, T., Devi, R., Kumar, S., Sheikh, I., Kour, D., Yadav, A.N., 2022. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon 8(4). https://doi.org/10.1016/j.heli....
 
61.
Kaur, T., Devi, R., Negi, R., Kumar, S., Singh, S., Rustagi, S., Yadav, A.N., 2024. Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.). Folia Microbiologica 1–12. https://doi.org/10.1007/s12223....
 
62.
Khan, B.A., Nadeem, M.A., Nawaz, H., Amin, M.M., Abbasi, G.H., Nadeem, M., Ayub, M.A., 2023. Pesticides: impacts on agriculture productivity, environment, and management strategies. In Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies. Cham: Springer International Publishing. (pp. 109–134). https://doi.org/10.1007/978-3-....
 
63.
Khan, F., Siddique, A.B., Shabala, S., Zhou, M., Zhao, C., 2023. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 12(15), 2861. https://doi.org/10.3390/plants....
 
64.
Khan, M.Y., Nadeem, S.M., Sohaib, M., Waqas, M.R., Alotaibi, F., Ali, L., Al-Barakah, F.N., 2022. Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Frontiers in microbiology 13, 958522. https://doi.org/10.3389/fmicb.....
 
65.
Konecka, E., Baranek, J., Hrycak, A., Kaznowski, A., 2012. Insecticidal activity of Bacillus thuringiensis strains isolated from soil and water. The Scientific World Journal 2012. https://doi.org/10.1100/2012/7....
 
66.
Korneykova, M., Vasenev, V., Kozlova, E., Soshina, A., Nikitin, D., Dolgikh, A., Saltan, N., 2024. Microbial communities of urban and industrial polluted soils in the Russian Arctic. Geoderma Regional 39, e00890. https://doi.org/10.1016/j.geod....
 
67.
Kumar, A., Verma, J.P., 2019. The role of microbes to improve crop productivity and soil health. Ecological wisdom inspired restoration engineering 249–265. https://doi.org/10.1007/978-98....
 
68.
Kumar, A., Maurya, B.R., Raghuwanshi, R., 2021. The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). Journal of Plant Nutrition 44(13), 1942–1956. https://doi.org/10.1080/019041....
 
69.
Kumar, P., Kumar, R., Thakur, K., Mahajan, D., Brar, B., Sharma, D., Sharma, A.K., 2023. Impact of pesticides application on aquatic ecosystem and biodiversity: a review. Biology Bulletin 50(6), 1362–1375. https://doi.org/10.1134/S10623....
 
70.
Lashani, E., Amoozegar, M.A., Turner, R.J., Moghimi, H., 2023. Use of Microbial consortia in bioremediation of metalloid polluted environments. Microorganisms 11(4), 891. https://doi.org/10.3390/microo....
 
71.
Li, X., Wu, S., Dong, Y., Fan, H., Bai, Z., Zhuang, X., 2021. Engineering microbial consortia towards bioremediation. Water 13(20), 2928. https://doi.org/10.3390/w13202....
 
72.
Li, Y., Honda, K., 2021. Toward the development of defined microbial therapeutics. International immunology 33(12), 761–766. https://doi.org/10.1093/intimm....
 
73.
Lin, H.H., Torres, M., Adams, C.A., Andeer, P.F., Owens, T.K., Zhalnina, K., Mortimer, J.C., 2024. Impact of inoculation practices on microbiota assembly and community stability in a fabricated ecosystem. Phytobiomes Journal, PBIOMES-06. https://doi.org/10.1094/PBIOME....
 
74.
Lin, L., 2022. Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. Biotechnology for Biofuels and Bioproducts 15(1), 14. https://doi.org/10.1186/s13068....
 
75.
Liu, C., Jiang, M., Yuan, M.M., Wang, E., Bai, Y., Crowther, T.W., Liang, Y., 2023. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils. Nature Food 4(10), 912–924. https://doi.org/10.1038/s43016....
 
76.
Liu, H., Qiu, Z., Ye, J., Verma, J.P., Li, J., Singh, B.K., 2022. Effective colonisation by a bacterial synthetic community promotes plant growth and alters soil microbial community. Journal of Sustainable Agriculture and Environment 1(1), 30–42. https://doi.org/10.1002/sae2.1....
 
77.
Lü, H., Wei, J.L., Tang, G.X., Chen, Y.S., Huang, Y. H., Hu, R., Li, Q.X., 2024. Microbial consortium degrading of organic pollutants: Source, degradation efficiency, pathway, mechanism and application. Journal of Cleaner Production 141913. https://doi.org/10.1016/j.jcle....
 
78.
Ludher, E.K. (2023, April 14). Fertiliser Security for Food Security in Southeast Asia: Going Local and Circular. Fulcrum. https://fulcrum.sg/fertiliser-....
 
79.
Lyu, H., Li, Y., Yu, A., 2024. Drive soil nitrogen transformation and improve crop nitrogen absorption and utilization-a review of green manure applications. Frontiers in Plant Science 14, 1305600. https://doi.org/10.3389/fpls.2....
 
80.
Ma, C.Y., Zhang, W., Luo, D.L., Jiang, H.J., Wu, X.H., Sun, K., Dai, C.C., 2023. Fungal endophyte promotes plant growth and disease resistance of Arachis hypogaea L. by reshaping the core root microbiome under monocropping conditions. Microbiological Research 277, 127491. https://doi.org/10.1016/j.micr....
 
81.
Mącik, M., Gryta, A., Frąc, M., 2020. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in Agronomy 162, 31–87. https://doi.org/10.1016/bs.agr....
 
82.
Mahmoud, G.AE., 2021. Biotic Stress to Legumes: Fungal Diseases as Major Biotic Stress Factor. In: Guleria, P., Kumar, V., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 51. Sustainable Agriculture Reviews, Vol 51. Springer, Cham. https://doi.org/10.1007/978-3-....
 
83.
Maiyappan, S., Amalraj, E.L.D., Santhosh, A., Peter, A.J., 2010. Isolation, evaluation and formulation of selected microbial consortia for sustainable agriculture. Journal of Biofertilizers & Biopesticides 2(109), 2. https://doi.org/10.4172/2155-6....
 
84.
Malik, S., Dhasmana, A., Kishore, S., Kumari, M., 2022. Microbes and microbial enzymes for degradation of pesticides. In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management. Apple Academic Press. (pp. 95–127). https://doi.org/10.1201/978100....
 
85.
Marín, O., González, B., Poupin, M.J., 2021. From microbial dynamics to functionality in the rhizosphere: a systematic review of the opportunities with synthetic microbial communities. Frontiers in Plant Science 12, 650609. https://doi.org/10.3389/fpls.2....
 
86.
Meena, M., Yadav, G., Sonigra, P., Nagda, A., Mehta, T., Swapnil, P., Zehra, A., 2023. Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions. In Plant-Microbe Interaction-Recent Advances in Molecular and Biochemical Approaches. Academic Press. (pp. 279–296). https://doi.org/10.1016/B978-0....
 
87.
Mehlferber, E.C., Arnault, G., Joshi, B., Partida-Martinez, L.P., Patras, K.A., Simonin, M., Koskella, B., 2024. A cross-systems primer for synthetic microbial communities. Nature microbiology 9(11), 2765–2773. https://doi.org/10.1038/s41564....
 
88.
Mir, M.I., Mukkamula, N., Kumar, B.K., Raghu, K., Parray, J.A., Khan, I., Babalola, O.O., 2024. Impact of microbial consortium of Rhizobium tropici and Rhizobium mayense on the growth of Phaseolus vulgaris L. South African Journal of Botany 168, 562–572. https://doi.org/10.1016/j.sajb....
 
89.
Misra, S., Semwal, P., Pandey, D.D., Mishra, S.K., Chauhan, P.S., 2023. Siderophore-Producing Spinacia oleracea Bacterial Endophytes Enhance Nutrient Status and Vegetative Growth Under Iron-Deficit Conditions. Journal of Plant Growth Regulation 1–14. https://doi.org/10.1007/s00344....
 
90.
Mitra, D., Mondal, R., Khoshru, B., Senapati, A., Radha, T.K., Mahakur, B., Mohapatra, P.K.D., 2022. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere 32(1), 149–170. https://doi.org/10.1016/S1002-....
 
91.
Mukherjee, A., Chouhan, G.K., Gaurav, A.K., Jaiswal, D.K., Verma, J.P., 2021. Development of indigenous microbial consortium for biocontrol management. In New and future developments in microbial biotechnology and bioengineering. Elsevier. (pp. 91–104). https://doi.org/10.1016/B978-0....
 
92.
Nargotra, P., Sharma, V., Lee, Y.C., Tsai, Y.H., Liu, Y.C., Shieh, C.J., Kuo, C.H., 2022. Microbial lignocellulolytic enzymes for the effective valorization of lignocellulosic biomass: a review. Catalysts 13(1), 83. https://doi.org/10.3390/catal1....
 
93.
Nawaz, M., Sun, J., Shabbir, S., Khattak, W.A., Ren, G., Nie, X., Sonne, C., 2023. A review of plants strategies to resist biotic and abiotic environmental stressors. Science of the Total Environment 165832. https://doi.org/10.1016/j.scit....
 
94.
Nazarov, P.A., Baleev, D.N., Ivanova, M.I., Sokolova, L.M., Karakozova, M.V., 2020. Infectious plant diseases: Etiology, current status, problems and prospects in plant protection. Acta Naturae 12(3), 46. https://doi.org/10.32607%2Fact....
 
95.
Nie, M., Wu, C., Tang, Y., Shi, G., Wang, X., Hu, C., Zhao, X., 2023. Selenium and Bacillus proteolyticus SES synergistically enhanced ryegrass to remediate Cu–Cd–Cr contaminated soil. Environmental Pollution 323, 121272. https://doi.org/10.1016/j.envp....
 
96.
Olanrewaju, O.S., Babalola, O.O., 2019. Bacterial consortium for improved maize (Zea mays L.) production. Microorganisms 7(11), 519. https://doi.org/10.3390/microo....
 
97.
Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B., Kamili, A.N., 2021. Chemical Fertilizers and Their Impact on Soil Health. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-....
 
98.
Palmieri, D., Vitullo, D., De Curtis, F., Lima, G., 2017. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant and soil 412, 425–439. https://doi.org/10.1007/s11104....
 
99.
Pathma, J., Kennedy, R.K., Bhushan, L.S., Shankar, B.K., Thakur, K., 2021. Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-98....
 
100.
Prigigallo, M.I., Gómez-Lama Cabanás, C., Mercado-Blanco, J., Bubici, G., 2022. Designing a synthetic microbial community devoted to biological control: The case study of Fusarium wilt of banana. Frontiers in Microbiology 13, 967885. https://doi.org/10.3389/fmicb.....
 
101.
Qiao, R., Xu, M., Jiang, J., Song, Z., Wang, M., Yang, L., Mao, Z., 2024. Plant growth promotion and biocontrol properties of a synthetic community in the control of apple disease. BMC Plant Biology 24. https://doi: 10.1186/s12870-024-05253-8.
 
102.
Rashid, A., Schutte, B.J., Ulery, A., Deyholos, M.K., Sanogo, S., Lehnhoff, E.A., Beck, L., 2023. Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy 13(6), 1521. https://doi.org/10.3390/agrono....
 
103.
Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (Text with EEA relevance). EUR-Lex. (2024, November 20). https://eur-lex.europa.eu/eli/....
 
104.
Ritonga, F.N., Zhou, D., Zhang, Y., Song, R., Li, C., Li, J., Gao, J., 2023. The roles of gibberellins in regulating leaf development. Plants 12(6), 1243. https://doi.org/10.3390/plants....
 
105.
Rodrigues, L.C.C., Fortini, R.M., CR Neves, M., 2023. Impacts of the use of biological pest control on the technical efficiency of the Brazilian agricultural sector. International Journal of Environmental Science and Technology 20(1), 1–16. https://doi.org/10.1007/s13762....
 
106.
Sabir, M.S., Shahzadi, F., Ali, F., Shakeela, Q., Niaz, Z., Ahmed, S., 2021. Comparative effect of fertilization practices on soil microbial diversity and activity: an overview. Current Microbiology 78, 3644–3655. https://doi.org/10.1007/s00284....
 
107.
Sachs, A., Szmuszkovicz, K., Schneider, M. (2020, November 30). EPA Releases Updated Draft Guidance for Biostimulant Products. Beveridge & Diamond. https://www.bdlaw.com/publicat....
 
108.
Saha, L., Bauddh, K., 2020. Sustainable agricultural approaches for enhanced crop productivity, better soil health, and improved ecosystem services. Ecological and Practical Applications for Sustainable Agriculture 1–23. https://doi.org/10.1007/978-98....
 
109.
Seenivasagan, R., Babalola, O.O., 2021. Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product. Biology 10(11), 1111. https://doi.org/10.3390/biolog....
 
110.
Segarra-Medina, C., Alseekh, S., Fernie, A.R., Rambla, J.L., Pérez-Clemente, R.M., Gómez-Cádenas, A., Zandalinas, S.I., 2023. Abscisic acid promotes plant acclimation to the combination of salinity and high light stress. Plant Physiology and Biochemistry 203, 108008. https://doi.org/10.1016/j.plap....
 
111.
Shah, I.H., Jinhui, W., Li, X., Hameed, M.K., Manzoor, M.A., Li, P., Chang, L., 2024a. Exploring the role of nitrogen and potassium in photosynthesis implications for sugar: Accumulation and translocation in horticultural crops. Scientia Horticulturae 327, 112832. https://doi.org/10.1016/j.scie....
 
112.
Shah, T., Khan, Z., Asad, M., D’amato, R., Alsahli, A.A., Ahmad, P., 2024. Synthetic bacterial community derived from Astragalus mongholicus and plant-plant interactions inhibit cadmium uptake by modulating gene expression, antioxidant system and carbohydrate metabolism under cadmium contaminated soil. Journal of Environmental Chemical Engineering 12(1), 111619. https://doi.org/10.1016/j.jece....
 
113.
Sharma, P., 2023. Biocontrol strategies–retrospect and prospects. Indian Phytopathology 76(1), 47–59. https://doi.org/10.1007/s42360....
 
114.
Shayanthan, A., Ordoñez, P.A.C., Oresnik, I.J., 2022. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Frontiers in Agronomy 4, 58. https://doi.org/10.3389/fagro.....
 
115.
Sherpa, M.T., Sharma, L., Bag, N., Das, S., 2021. Isolation, characterization, and evaluation of native rhizobacterial consortia developed from the rhizosphere of rice grown in organic state Sikkim, India, and their effect on plant growth. Frontiers in microbiology 12, 713660. https://doi.org/10.3389/fmicb.....
 
116.
Shinwari, Z.K., Tanveer, F., Iqrar, I., 2019. Role of microbes in plant health, disease management, and abiotic stress management. Microbiome in Plant Health and Disease: Challenges and Opportunities 231–250. https://doi.org/10.1007/978-98....
 
117.
Singh, A., Roychoudhury, A., 2023. Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Reports 42(6), 961–974. https://doi.org/10.1007/s00299....
 
118.
Singha, L.P., Shukla, P., 2023. Microbiome engineering for bioremediation of emerging pollutants. Bioprocess and Biosystems Engineering 46(3), 323–339. https://doi.org/10.1007/s00449....
 
119.
Snyder, L.D., Gómez, M.I., Power, A.G., 2020. Crop varietal mixtures as a strategy to support insect pest control, yield, economic, and nutritional services. Frontiers in Sustainable Food Systems 4, 60. https://doi.org/10.3389/fsufs.....
 
120.
Sotelo-Aguilar, J., Rios-Galicia, B., Mercado-Flores, Y., Arteaga-Garibay, R., Villa-Tanaca, L., Hernández-Rodríguez, C., 2023. Promotion of the growth and yield of Zea mays by synthetic microbial communities from Jala maize. Frontiers in Microbiology 14. https://doi.org/10.3389/fmicb.....
 
121.
Spescha, A., Weibel, J., Wyser, L., Brunner, M., Hermida, M.H., Moix, A., Maurhofer, M., 2023. Combining entomopathogenic Pseudomonas bacteria, nematodes and fungi for biological control of a below-ground insect pest. Agriculture, Ecosystems & Environment 348, 108414. https://doi.org/10.1016/j.agee....
 
122.
Srivastava, S., Sharma, S., 2022. Metabolomic insight into the synergistic mechanism of action of a bacterial consortium in plant growth promotion. Journal of bioscience and bioengineering 134(5), 399–406. https://doi.org/10.1016/j.jbio....
 
123.
Svolacchia, N., Sabatini, S., 2023. Cytokinins. Current Biology 33(1), 10–13. https://doi.org/10.1016/j.cub.....
 
124.
Tan, S. Q., Yin, Y., Cao, K.L., Zhao, X.X., Wang, X.Y., Zhang, Y.X., Shi, W.P., 2021. Effects of a combined infection with Paranosema locustae and Beauveria bassiana on Locusta migratoria and its gut microflora. Insect Science 28(2), 347–354. https://doi.org/10.1111/1744-7....
 
125.
Tariq, A., Guo, S., Farhat, F., Shen, X., 2025. Engineering Synthetic Microbial Communities: Diversity and Applications in Soil for Plant Resilience. Agronomy 15(3), 513. https://doi.org/10.3390/agrono....
 
126.
Thakur, N., Kaur, S., Tomar, P., Thakur, S., Yadav, A.N., 2020. Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In New and future developments in microbial biotechnology and bioengineering. Elsevier. (pp. 243–282). https://doi.org/10.1016/B978-0....
 
127.
Tian, Z., Wang, J.W., Li, J., Han, B., 2021. Designing future crops: challenges and strategies for sustainable agriculture. The Plant Journal 105(5), 1165–1178. https://doi.org/10.1111/tpj.15....
 
128.
Timofeeva, A.M., Galyamova, M.R., Sedykh, S.E., 2023. Plant growth-promoting bacteria of soil: designing of consortia beneficial for crop production. Microorganisms 11(12), 2864. https://doi.org/10.3390/microo....
 
129.
Tripathi, R., Tewari, R., Singh, K.P., Keswani, C., Minkina, T., Srivastava, A.K., Sansinenea, E., 2022. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Frontiers in Plant science 13, 883970. https://doi.org/10.3389/fpls.2....
 
130.
Tsolakidou, M.D., Stringlis, I.A., Fanega-Sleziak, N., Papageorgiou, S., Tsalakou, A., Pantelides, I.S., 2019. Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiology Ecology 95(10), fiz138. https://doi.org/10.1093/femsec....
 
131.
Valle-García, J.D., Ali, A., Patra, J.K., Kerry, R.G., Das, G., Fernández-Luqueño, F., 2023. Integration of Eco-Friendly Biological and Nanotechnological Strategies for Better Agriculture: A Sustainable Approach. Agricultural and Environmental Nanotechnology: Novel Technologies and their Ecological Impact 647-674. https://doi.org/10.1007/978-98....
 
132.
Vega-Celedón, P., Bravo, G., Velásquez, A., Cid, F.P., Valenzuela, M., Ramírez, I., Seeger, M., 2021. Microbial diversity of psychrotolerant bacteria isolated from wild flora of andes mountains and patagonia of chile towards the selection of plant growth-promoting bacterial consortia to alleviate cold stress in plants. Microorganisms 9(3), 538. https://doi.org/10.3390/microo....
 
133.
Verma, J.P., Jaiswal, D.K., Krishna, R., Prakash, S., Yadav, J., Singh, V., 2018. Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh region of India. Frontiers in Microbiology 9, 1293. https://doi.org/10.3389/fmicb.....
 
134.
Wang, H., Liu, R., You, M.P., Barbetti, M.J., Chen, Y., 2021. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms 9(9), 1988. https://doi.org/10.3390/microo....
 
135.
Wang, S., Dai, G., Yang, H., Luo, Z., 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in energy and combustion science 62, 33–86. https://doi.org/10.1016/j.pecs....
 
136.
Wang, Y., Liu, H., Shen, Z., Miao, Y., Wang, J., Jiang, X., Li, R., 2022. Richness and antagonistic effects co-affect plant growth promotion by synthetic microbial consortia. Applied Soil Ecology 170, 104300. https://doi.org/10.1016/j.apso....
 
137.
Yan, W., Liu, Y., Malacrinò, A., Zhang, J., Cheng, X., Rensing, C., Wu, H., 2024. Combination of biochar and PGPBs amendment suppresses soil-borne pathogens by modifying plant-associated microbiome. Applied Soil Ecology 193, 105162. https://doi.org/10.1016/j.apso....
 
138.
Yin, C., Hagerty, C.H., Paulitz, T.C., 2022. Synthetic microbial consortia derived from rhizosphere soil protect wheat against a soilborne fungal pathogen. Frontiers in Microbiology 13, 908981. https://doi.org/10.3389/fmicb.....
 
139.
Yokoyama, T., 2023. Development and Use of Biofertilizers in Japan: Current Situation and Future Directions. Asia-Pacific Biofertilizers and Biopesticides Information Platform. 1–12. https://doi.org/10.56669/TGJS1....
 
140.
Zandalinas, S.I., Sengupta, S., Fritschi, F.B., Azad, R.K., Nechushtai, R., Mittler, R., 2021. The impact of multifactorial stress combination on plant growth and survival. New Phytologist 230(3), 1034–1048. https://doi.org/10.1111/nph.17....
 
141.
Zhang, B., Liu, D., Liu, H., Shen, J., Zhang, J., He, L., Shi, K., 2024. Impact of indigenous Oenococcus oeni and Lactiplantibacillus plantarum species co-culture during Cabernet Sauvignon wine malolactic fermentation: Kinetic parameters, color and aroma. Food Chemistry: X 101369. https://doi.org/10.1016/j.foch....
 
142.
Zhang, J., Liu, Y.X., Zhang, N., Hu, B., Jin, T., Xu, H., Bai, Y., 2019. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature biotechnology 37(6), 676–684. https://doi.org/10.1038/s41587....
 
143.
Zhang, Y., Ye, C., Su, Y., Peng, W., Lu, R., Liu, Y., Zhu, S., 2022. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agriculture, Ecosystems & Environment 340, 108176. https://doi.org/10.1016/j.agee....
 
144.
Zheng, G., Yin, T., Lu, Z., Boboua, S., Li, J., Zhou, W., 2020. Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. Bioresource technology 304, 123064. https://doi.org/10.1016/j.bior....
 
145.
Zheng, X., Zhang, Y., Zhang, Y., Cui, Y., Wu, J., Zhang, W., Zou, J., 2023. Interactions between nitrogen and phosphorus in modulating soil respiration: A meta-analysis. Science of The Total Environment 905, 167346. https://doi.org/10.1016/j.scit....
 
146.
Zhou, J., Liu, Y., Xu, W., Wang, Z., Chen, W., Hu, Y., 2024. Effect of synthetic microbial communities on rhizosphere and root-endophytic microbiota of soybean[J]. Chinese Journal of Eco-Agriculture 32(4), 571–581. https://doi.org/10.12357/cjea.....
 
147.
Zhou, X., Zhou, X., Wang, C., Zhou, H., 2023. Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere 313, 137489. https://doi.org/10.1016/j.chem....
 
148.
Zhuang, L., Li, Y., Wang, Z., Yu, Y., Zhang, N., Yang, C., Wang, Q., 2021. Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth. Microbial Biotechnology 14(2), 488–502. https://doi.org/10.1111/1751-7....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top