REVIEW PAPER
Salts phytoremediation by halophytes in soil and aquatic environments: new mechanisms, promising species, and challenges
More details
Hide details
Submission date: 2025-02-12
Final revision date: 2025-04-25
Acceptance date: 2025-06-09
Online publication date: 2025-06-09
Publication date: 2025-06-09
Corresponding author
Piotr Hulisz
Faculty of Earth Sciences and Spatial Management, Department of Soil Science and Landscape Ecology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Polska
Soil Sci. Ann., 2025, 76(2)206904
KEYWORDS
ABSTRACT
Excessive soluble salt accumulation in the soil or water reduces plant growth, renders land unusable, negatively impacts aquatic life, and limits water usage for various purposes. This paper explores the phytoremediation potential of halophytes and their ability to absorb salts from soil and aquatic environments. These plants offer numerous benefits, such as producing food, forage, oil, biofuels, and herbal medicines. They are useful in various sectors, including industry, pharmaceuticals, landscaping, and environmental reclamation. Halophyte farming, or biosaline agriculture, is successfully used for animal feed and biofuel production. Key challenges include identifying suitable varieties, improving yields, optimizing cultivation methods, and assessing economic viability for broader adoption. Phytoremediation is an eco-friendly and cost-effective method for cleaning up polluted environments, utilizing plants or algae to remove, detoxify, or stabilize contaminants in soil, water, or air. It offers several mechanisms, including phytoextraction, phytodegradation, phytostabilization, rhizofiltration, phytoaugmentation, and phytostimulation, as alternatives to traditional remediation techniques like excavation and removal of contaminated materials. Halophytes hold promise as a sustainable and cost-effective solution for mitigating soil and water salinity through salt phytoremediation, offering a hopeful prospect for the environment. However, more research is needed to refine halophyte cultivation, maximize their phytoremediation potential, and ensure economic feasibility.
REFERENCES (103)
1.
Abrol, I.P., Yadav, J.S.P., Massoud, F.I., 1988. Salt-affected soils and their management. FAO Soils Bulletin 39, Rome, FAO.
2.
Adams, G.O., Fufeyin, P.T., Okoro, S.E., Ehinomen, I., 2015. Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation 3, 28–39.
https://doi.org/10.12691/ijebb....
3.
Al Hassan, M., Chaura, J., Lopez-Gresa, M.P., Borsai, O., Daniso, E., Donat-Torres, M.P., Mayoral, O., Vicente, O., Boscaiu, M., 2016. Native-invasive plants vs. halophytes in Mediterranean salt marshes: stress tolerance mechanisms in two related species. Frontiers in Plant Science, 7473.
https://doi.org/10.3389/fpls.2....
4.
Al-Mailem, D.M., Sorkhoh, N.A., Marafie, M., Al-Awadhi, H., Eliyas, M., Radwan, S.S., 2010. Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresource Technology 101(15), 5786–5792.
https://doi.org/10.1016/j.bior....
5.
Amezaga, J.M., Amtmann, A., Biggs, C.A., Bond, T., Gandy, C.J., Honsbein, A., Karunakaran, E., Lawton, L., Madsen, M.A., Minas, K., Templeton, M.R., 2014. Biodesalination: a case study for applications of photosynthetic bacteria in water treatment. Plant Physiology 164(4), 1661–1676,
https://doi.org/10.1104/pp.113....
6.
Arora, N.K., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., Verma, M., Bhattacharya, A., Verma, P., Mishra, P., Bharti, C., 2020. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research 26, 69–82.
https://doi.org/10.1016/j.jare....
7.
Assaha, D.V., Ueda, A., Saneoka, H., Al-Yahyai, R., Yaish, M.W., 2017. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Frontiers in Physiology 8, 509.
https://doi.org/10.3389/fphys.....
8.
Aziz, I., Mujeeb, A., 2022. Halophytes for phytoremediation of hazardous metal(loid)s: A terse review on metal tolerance, bio-indication and hyperaccumulation. Journal of Hazardous Materials 424, 127309.
https://doi.org/10.1016/j.jhaz....
9.
Bala, S., Garg, D., Thirumalesh, B.V., Sharma, M., Sridhar, K., Inbaraj, B.S., Tripathi, M., 2022. Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment. Toxics 10(8), 484.
https://doi.org/10.3390/toxics....
10.
Barkla, B.J., Farzana, T., Rose, T.J., 2024. Commercial cultivation of edible halophytes: the issue of oxalates and potential mitigation options. Agronomy 14, 242.
https://doi.org/10.3390/agrono....
11.
Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J.J., Grigore, M.N., Perea-Flores, M.J., 2021. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental Experimental Botany 191, 104606.
https://doi.org/10.1016/j.enve....
12.
Cárdenas-Pérez, S., Rajabi Dehnavi, A., Leszczyński, K., Lubińska-Mielińska, S., Ludwiczak, A., Piernik, A., 2022. Salicornia europaea L. functional traits indicate its optimum growth. Plants 11, 1051.
https://doi.org/10.3390/plants....
13.
Cárdenas-Pérez, S., Grigore, M. N., Piernik, A., 2024. Prediction of Salicornia europaea L. biomass using a computer vision system to distinguish different salt-tolerant populations. BMC Plant Biology 24, 1–19.
https://doi.org/10.1186/S12870....
14.
Chen, L.H., Zheng, J.H., Shao, X.H., Shen, S.S., Yu, Z.H., Mao, X.Y., Chang, T.T., 2016. Effects of Trichoderma harzianum T83 on Suaeda salsa L. in coastal saline soil. Ecological Engineering 91, 58–64.
https://doi.org/10.1016/j.ecol....
15.
Cowan, A.R., Costanzo, C.M., Benham, R., Loveridge, E.J., Moody, S.C., 2022. Fungal bioremediation of polyethylene: Challenges and perspectives. Journal of Applied Microbiology 132, 78–89.
https://doi.org/10.1111/jam.15....
16.
Cristaldi, A., Copat, C., Conti, G.O., Zuccarello, P., Grasso, A., Ferrante, M., 2020. Phytoremediation. [In:] Chaudhery, M.H. (Ed.), The Handbook of Environmental Remediation: Classic and Modern Techniques. Royal Society of Chemistry, 268–298.
https://doi.org/10.1039/978178....
17.
Elizareva, E., Yanbaev, Y., Redkina, N., Kudashkina, N., Elizaryev, A., 2020. Combining Phytoremediation Technologies of Soil Cleanup and Biofuel Production. [In:] Murgul, V., Pasetti, M. (Eds.), Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018, Springer, 257–266.
https://doi.org/10.1007/978-3-....
20.
Ferraro, A., Panico, A., Pirasteh-Anosheh, H., Race, M., Spasiano, D., Trancone, G., Pirozzi, F., 2023. Innovative treatment processes for emerging contaminants removal from sewage sludge. [In:] Núñez-Delgado, A., Arias-Estévez, M. (Eds.), Emerging Pollutants in Sewage Sludge and Soils. Springer International Publishing, 89–110.
https://doi.org/10.1007/698_20....
21.
Figler, A., B-Béres, V., Dobronoki, D., Márton, K., Nagy, S.A., Bácsi, I., 2019. Salt tolerance and desalination abilities of nine common green microalgae isolates. Water 11(12), 2527.
https://doi.org/10.3390/w11122....
22.
Flowers, T.J., Yeo, A.R., 1995. Tolerance of salinity in halophytes. Plant and Soil 187, 69–91.
24.
Flowers, T.J., Colmer, T.D., 2008. Salinity tolerance in halophytes. New Phytologist 179(4), 945–963.
25.
Flowers, T.J., Santos, J., Al-Azzawi, M.D., Cook, S., Garcia-Caparros, P., 2024. A database of halophytes and other salt-tolerant plants.
https://ehaloph.uc.pt/.
27.
Garcia-Caparros, P., Hasanuzzaman, M., Lao, M.T., 2021. Ion homeostasis and its role in salt remediation by halophytes. [In:] Hasanuzzaman, M. (Ed.), Approaches to the Remediation of Inorganic Pollutants. Springer, 1–9.
https://doi.org/10.1007/978-98....
28.
Garcia-Caparros, P., Ozturk, M., Gul, A., Batool, T.S., Pirasteh-Anosheh, H., Unal, B.T., Altay, V., Toderich, K.N., 2022. Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environmental and Experimental Botany 193, 104666.
https://doi.org/10.1016/j.enve....
29.
Ghanem, A.M.F., Mohamed, E., Kasem, A.M., El-Ghamery, A.A., 2021. Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants 10(6), 1100.
https://doi.org/10.3390/plants....
30.
Gill, R., Naeem, M., Ansari, A.A., Gill, S.S., 2023. Phytoremediation and Management of Environmental Contaminants: An Overview. [In:] Newman, L., Ansari, A.A., Gill, S.S., Naeem, M., Gill, R. (Eds.), Phytoremediation: Management of Environmental Contaminants 7. Springer; p. 3–14.
https://doi.org/10.1007/978-3-....
31.
Gillespie, I.M., Philp, J.C., 2013. Bioremediation, an environmental remediation technology for the bioeconomy. Trends in Biotechnology 31(6), 329-332.
https://doi.org/10.1016/j.tibt....
32.
Glenn, E.P., O’Leary, J.W., Watson, M.C., Thompson, T.L., Kuehl, R.O., 1991. Salicornia bigelovii Torr: An oilseed halophyte for seawater irrigation. Science 251, 1065 ̶1067.
https://doi.org/10.1126/scienc....
33.
Govere, E.M., 2021. Environmental phytoremediation and analytical technologies for heavy metal removal and assessment. [In:] Ricroch, A., Chopra, S., Kuntz, M. (Eds.), Plant Biotechnology: Experience and Future Prospects. Springer, 203–213.
https://doi.org/10.1007/978-3-....
34.
Hasanuzzaman, M., Nahar, K., Alam, M.M., Bhowmik, P.C., Hossain, M.A., Rahman, M.M., Prasad, M.N.V., Ozturk, M., Fujita, M., 2014. Potential use of halophytes to remediate saline soils. BioMed Research International 2014, 589341.
https://doi.org/10.1155/2014/5....
35.
Hasheminejad, Y., Dehghany, F., Salehi, M., Ebrahimi, N., 2017. Using haloculture technology to stabilize dust production centers. AREEO Bulletin No 52526.
36.
Heringer, G., Fernandez, R. D., Bang, A., Cordonnier, M., Novoa, A., Lenzner, B., Capinha, C., Renault, D., Roiz, D., Moodley, D., Tricarico, E., Holenstein, K., Kourantidou, M., Kirichenko, N. I., Adelino, J. R. P., Dimarco, R. D., Bodey, T. W., Watari, Y., Courchamp, F., 2024. Economic costs of invasive non-native species in urban areas: An underexplored financial drain. Science of The Total Environment 917, 170336.
https://doi.org/10.1016/J.SCIT....
37.
Heuermann, D., Döll, S., Schweneker, D., Feuerstein, U., Gentsch, N., von Wirén, N.. 2023. Distinct metabolite classes in root exudates are indicative for field-or hydroponically-grown cover crops. Frontiers in Plant Science 14, 1122285.
https://doi.org/10.3389/fpls.2....
38.
Himabindu, Y., Chakradhar, T., Reddy, M.C., Kanygin, A., Redding, K.E., Chandrasekhar, T., 2016. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany 124, 39–63.
https://doi.org/10.1016/j.enve....
39.
Hulisz, P., Piernik, A., Mantilla-Contreras, J., Elvisto, T., 2016. Main driving factors for seacoast vegetation in the Southern and Eastern Baltic. Wetlands 36, 909 ̶919.
https://doi.org/10.1007/s13157....
40.
Ibraheem, F., Al-Hazmi, N., El-Morsy, M., Mosa, A., 2021. Ecological risk assessment of potential toxic elements in salt marshes on the east coast of the Red Sea: differential physiological responses and adaptation capacities of dominant halophytes. Sustainability 13, 11282.
https://doi.org/10.3390/su1320....
41.
Ievinsh, G., 2023. Halophytic clonal plant species: important functional aspects for existence in heterogeneous saline habitats. Plants 12, 1728.
https://doi.org/10.3390/plants....
42.
Imadi, S.R., Shah, S.W., Kazi, A.G., Azooz, M.M., Ahmad, P., 2016. Phytoremediation of saline soils for sustainable agricultural Productivity. [In:] Ahmad, P. (Ed.), Plant Metal Interaction, Emerging Remediation Techniques. Elsevier, 455–468.
https://doi.org/10.1016/B978-0....
43.
Jariyal, M., Yadav, M., Singh, N. K., Yadav, S., Sharma, I., Dahiya, S., Thanki, A., 2020. Microbial remediation progress and future prospects. [In:] Pandey, V.P., Singh, V. (Eds.), Bioremediation of Pollutants: From Genetic Engineering to Genome Engineering, Elsevier, 187–214.
https://doi.org/10.1016/B978-0....
44.
Jesus, J.M., Danko, A.S., Fiúza, A., Borges, M.T., 2015. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environmental Science and Pollution Research 22(9), 6511–6525.
https://doi.org/10.1007/s11356....
45.
Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., Aryal, N., 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances 8, 100203.
https://doi.org/10.1016/j.enva....
47.
Kensa, V.M., 2011. Bioremediation-an overview. Journal of Industrial Pollution Control 27(2), 161–168.
48.
Khalidy, R., Arnaud, E., Santos, R.M., 2022. Natural and Human-induced factors on the accumulation and migration of pedogenic carbonate in soil: A review. Land 11(9), 1448.
https://doi.org/10.3390/land11....
49.
Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., Devarajan, R., 2024. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin 2(3), 154–171.
https://doi.org/10.1016/J.WMB.....
50.
Li, H., Zhao, Q., Huang, H., 2019. Current state and challenges of salt-affected soil remediation by cyanobacteria. Science of the Total Environment 669, 258–272.
https://doi.org/10.1016/j.scit....
52.
Loconsole, D., Murillo-Amador, B., Cristiano, G., De Lucia, B., 2019. Halophyte common ice plants: A future solution to arable land salinization. Sustainability, 11(21), 6076.
https://doi.org/10.3390/su1121....
53.
Ludwiczak, A., Kapusta, P., Chapko, P., Wojtasik, J., Wojciechowska, A., Piernik, A. (2024). Parental environment as a factor shaping salinity tolerance in halophyte Tripolium pannonicum L. Environmental and Experimental Botany 228, 106008.
https://doi.org/10.1016/J.ENVE....
54.
Matilla, A., Gallardo, M., Puga-Hermida, M.I., 2005. Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Science Research 15(2), 63 ̶76.
https://doi.org/10.1079/SSR200....
55.
Mohammadi, H., Rahimpour, B., Pirasteh-Anosheh, H., Race, M., 2022. Salicylic acid manipulates ion accumulation and distribution in favor of salinity tolerance in Chenopodium quinoa. Journal of Environmental Research and Public Health 19(3),1576.
https://doi.org/10.3390/ijerph....
56.
Mushtaq, W., Bedair, H., Shakeel, A., 2020. Halophytes: a phytoremediation tool for salt-affected soils with special reference to Indian subcontinent. [In:] Grigore, M.N. (Ed.), Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture. Springer, 1–16.
https://doi.org/10.1007/978-3-....
57.
Nguyen, H.T., Kim, Y., Choi, J.W., Jeong, S., Cho, K., 2021. Soil microbial communities-mediated bioattenuation in simulated aquifer storage and recovery (ASR) condition: Long-term study. Environmental Research 197, 111069.
https://doi.org/10.1016/j.envr....
58.
Nguyen, T.Q., Sesin, V., Kisiala, A., Emery, R.N., 2021. Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environmental Toxicology and Chemistry 40, 7–22.
https://doi.org/10.1002/etc.49....
59.
Norris, R.D., 1993. Handbook of bioremediation. CRC Press.
60.
Nouri, H., Chavoshi Borujeni, S., Nirola, R., Hassanli, A., Beecham, S., Alaghmand, S., Saint, C., Mulcahy, D., 2017. Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Safety and Environmental Protection 107, 94–107.
https://doi.org/10.1016/j.psep....
61.
Ortiz-Castro, R., López-Bucio, J., 2019. Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Science 284, 135–142.
62.
Parnian, A., Parnian, A., Pirasteh-Anosheh, H., Parvizi, H., 2020. Potential of a pyrolyzed sugarcane industry waste for spillage oil absorption. Journal of Natural Resource Conservation and Management 2, 163–168.
https://doi.org/10.51396/ANRCM....
63.
Parnian, A., Chorom, M., Jaafarzadeh, N., Pirasteh-Anosheh, H., Ozturk, M., Unal, D., Yilmaz, D.D., Altay, V., 2022a. Bioremediation of cadmium and nickel from a saline aquatic environment using Ceratophyllum demersum. Chiang Mai Journal of Science 49(2), 339–347.
https://doi.org/10.12982/CMJS.....
64.
Parnian, A., Furze, J.N., Parnian, A., 2022. Drilling Waste Management Based on New Methods of Bioremediation and Solar Desalination. [In:] Furze, J.N., Eslamian, S., Raafat, S.M., Swing, K. (Eds.), Earth Systems Protection and Sustainability. Springer, Cham.
https://doi.org/10.1007/978-3-....
65.
Parnian, A., Furze, J.N., Chorom, M., Jaafarzadeh, N., 2022c. Competitive bioaccumulation by Ceratophyllum demersum L. [In:] Furze, J.N., Eslamian, S., Raafat, S.M., Swing, K. (Eds.), Earth Systems Protection and Sustainability. Springer, Cham.
https://doi.org/10.1007/978-3-....
66.
Parnian, A., Parnian, A., Pirasteh-Anosheh, H., Furze, J.N., Prasad, M.N.V., Race, M., Hulisz, P., Ferraro, A., 2022d. Full-scale bioremediation of petroleum-contaminated soils via integration of co-composting. Journal of Soils and Sediments 22, 2209–2218.
https://doi.org/10.1007/s11368....
67.
Parnian, A., Mahbod, M., Prasad, M.N.V., 2023. Microplastics remediation–possible perspectives for mitigating saline environments. [In:] Vithanage, M., Prasad, M.N.V. (Eds.), Microplastics in the Ecosphere: Air, Water, Soil, and Food. Chichester, Wiley, 465–476.
https://doi.org/10.1002/978111....
68.
Patel, A.K., Tseng, Y.S., Singhania, R.R., Chen, C.W., Chang, J.S., Di Dong, C., 2021. Novel application of microalgae platform for biodesalination process: a review. Bioresource Technology 337, 125343.
https://doi.org/10.1016/j.bior....
69.
Pindral, S., Kot, R., Malinowska, A., Hulisz, P., 2023. The effect of technogenic materials on fine-scale soil heterogeneity in a human-transformed landscape. Catena 221 (A), 106772.
https://doi.org/10.1016/j.cate....
70.
Pirasteh-Anosheh, H., Ranjbar, G., Pakniyat, H., Emam, Y., 2016. Physiological mechanisms of salt stress tolerance in plants. [In:] Azooz, M.M., Ahmad, P. (Eds.), Plant‐Environment Interaction. Wiley, 141–160.
https://doi.org/10.1002/978111....
71.
Pirasteh-Anosheh, H., Parvizi, H., Parnian, A., Esfahan, E.Z., Ranjbar, G., Bhardwaj, A.K., 2022. Relationship between soil salinity and alkalinity with Alhagi camelorum growth in hypersaline and hyperarid environments. Journal of Arid Environments 206, 104830.
https://doi.org/10.1016/j.jari....
72.
Pirasteh-Anosheh, H., Parnian, A., Spasiano, D., Race, M., Ashraf, M., 2021. Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environmental Research 198, 111228.
https://doi.org/10.1016/j.envr....
73.
Pirasteh-Anosheh, H., Piernik, A., Łuczak, K., Mendyk, Ł., Hulisz, P., 2023a. The behavior of potentially toxic elements in the technogenic soil-plant system: A study of Salicornia europaea L. from sites affected by the soda industry. Ecological Modelling 486, 110517.
https://doi.org/10.1016/j.ecol....
74.
Pirasteh-Anosheh, H., Ranjbar, G., Akram, N., Ghafar, M.A., Panico, A., 2023b. Forage potential of several halophytic species grown on saline soil in arid environments. Environmental Research 219, 114954.
https://doi.org/10.1016/j.envr....
75.
Pirasteh-Anosheh, H., Samadi, M., Kazemeini, S.A., Ozturk, M., Ludwiczak, A., Piernik, A., 2023c. ROS homeostasis and antioxidants in the halophytic plants and seeds. Plants 12(17), 3023.
https://doi.org/10.3390/plants....
76.
Prasad, M.N.V., 2014. Plant Ecophysiology. Wiley.
77.
Radulovich, R., Umanzor, S., 2021. Halophyte Use and Cultivation. [In] Grigore, M.N. (Ed.,) Handbook of Halophytes. Springer, Cham. 2517–2535
https://doi.org/10.1007/978-3-....
78.
Rahman, M.M., Mostofa, M.G., Keya, S.S., Siddiqui, M.N., Ansary, M.M.U., Das A.K., Rahman, M.A., Tran, L.S.P., 2021. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants. International Journal of Molecular Sciences 22(19), 10733.
https://doi.org/10.3390/ijms22....
79.
Ranjbar, G.H., Pirasteh-Anosheh, H., Banakr, M.H., Miri, H., 2018. Review on halophytes research in Iran: Explanation of Challenges and Offer Approaches. Journal of Plant Ecophysiology 32, 117–129.
80.
Rathankumar, A. K., Saikia, K., Cabana, H., & Kumar, V. V., 2022. Surfactant-aided mycoremediation of soil contaminated with polycyclic aromatic hydrocarbons. Environmental Research, 209, 112926.
https://doi.org/10.1016/j.envr....
81.
Rengasamy, P., de Lacerda, C.F., Gheyi, H.R., 2022. Salinity, sodicity and alkalinity. [In:] Oliveira, T.S., Bell, R.W. (Eds.), Subsoil Constraints for Crop Production Springer, Cham., 83–107.
https://doi.org/10.1007/978-3-....
82.
Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook No. 60. Washington, DC, USA.
83.
Sakai, Y., Ma, Y., Xu, C., Wu, H., Zhu, W., Yang, J., 2012. Phytodesalination of a salt-affected soil with four halophytes in China. Journal of Arid Land Studies 22, 17–20.
84.
Saleem, S., Rizvi, A., Khan, M., 2022. Microbiome-mediated nano-bioremediation of heavy metals: a prospective approach of soil metal detoxification. International Journal of Environmental Science and Technology 20, 12823–12846.
https://doi.org/10.1007/s13762....
85.
Sayqal, A., Ahmed, O.B., 2021. Advances in heavy metal bioremediation: an overview. Applied Bionics and Biomechanics SI2021, 1609149.
https://doi.org/10.1155/2021/1....
86.
Schmidt, U., 2003. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. Journal of Environmental Quality 32(6), 1939–1954.
https://doi.org/10.2134/jeq200....
87.
Shabala, S., Mackay, A., 2011. Ion transport in halophytes. [In:] Turkan, I. (Ed.), Advances in Botanical Research 57. Elsevier, 151–199.
https://doi.org/10.1016/B978-0....
88.
Sharma, P., Pandey, A.K., Kim, S.H., Singh, S.P., Chaturvedi, P., Varjani, S., 2021. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environmental Technology & Innovation 24, 101826.
https://doi.org/10.1016/j.eti.....
89.
Sharma, P., Bano, A., Singh, S.P., Dubey, N.K., Chandra, R., Iqbal, H.M.N., 2022. Recent advancements in microbial-assisted remediation strategies for toxic contaminants. Cleaner Chemical Engineering 2, 100020.
https://doi.org/10.1016/J.CLCE....
90.
Shaygan, M., Mulligan, D., Baumgartl, T., 2018. The potential of three halophytes (Tecticornia pergranulata, Sclerolaena longicuspis, and Frankenia serpyllifolia) for the rehabilitation of brine‐affected soils. Land Degradation and Development 29(6), 2002–2014.
https://doi.org/10.1002/ldr.29....
91.
Shekhawat, V.P., Kumar, A., Neumann, K.H., 2006. Bio-reclamation of secondary salinized soils using halophytes. [In:] Ozturk, M., Waisel, Y., Khan, M.A., Görk, G. (Eds.), Biosaline Agriculture and Salinity Tolerance in Plants. Springer, 147–154.
https://doi.org/10.1007/3-7643....
92.
Singh, B.M., Singh, D., Dhal, N.K., 2022. Enhanced phytoremediation strategy for sustainable management of heavy metals and radionuclides. Case Studies in Chemical and Environmental Engineering 5, 100176.
https://doi.org/10.1016/j.csce....
93.
Speight, J.G., 2020. Remediation technologies. [In:] Speight, J.G. (Ed.), Natural Water Remediation: Chemistry and Technology. Elsevier, 263–303.
https://doi.org/10.1016/B978-0....
94.
Stavi. I., Thevs, N., Priori, S., 2021. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Sciences 9, 712831.
https://doi.org/10.3389/fenvs.....
95.
Szumanska, I., Lubinska-Mielinska, S., Kaminski, D., Rutkowski, L., Nienartowicz, A., Piernik, A., 2021. Invasive plant species distribution is structured by soil and habitat type in the city landscape. Plants 10, 773.
https://doi.org/10.3390/plants....
96.
USEPA, 2004. How to evaluate alternative cleanup technologies for underground storage tank sites: A guide for corrective action plan reviewers. US Environmental Protection Agency.
97.
Verma, J., Kumar, D., Singh, N., Katti, S.S., Shah, Y.T., 2021. Electricigens and microbial fuel cells for bioremediation and bioenergy production: a review. Environmental Chemistry Letters 19(3), 2091–2126.
https://doi.org/10.1007/s10311....
98.
Witte, S., Freund, H., Buhk, N., Klement, K., Schürmann, T., Giani, L., 2018. Impact of pedological conditions on the distribution of Salicornia species (Southern North Sea coast). Journal of Coastal Conservation 22, 79–85.
https://doi.org/10.1007/s11852....
99.
Yadav, M., Singh, G., Jadeja, R.N., 2021. Bioremediation of organic pollutants: a sustainable green approach. [In:] Sustainable Environmental Clean-up. Elsevier, 131–147.
100.
Yasseen, B.T., Al-Thani, R.F., 2022. Endophytes and halophytes to remediate industrial wastewater and saline soils: Perspectives from Qatar. Plants 11(11), 1497.
https://doi.org/10.3390/plants....
101.
Zainab, R., Hasnain, M., Abideen, Z., Kayani, H.A., 2023. The role of halophytic plant invasions for the conservation and restoration of degraded agricultural lands. [In:] Tripathi, S., Bhadouria, R., Srivastava, P., Singh, R., Batish, D.R. (Eds.), Plant invasions and global climate change. Springer, Singapore.
https://doi.org/10.1007/978-98....
102.
Zhang, H., Huang, L., Wang, H., Li, Y., 2016. Differences of soil microbes in different saline-sodic grasslands and their relations with soil salinity and nutrients. Journal of Jilin Agricultural University 38(6), 703–709.
103.
Zhang, H., Yuan, X., Xiong, T., Wang, H., Jiang, L., 2020. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Environmental Chemistry Letters 398, 125657.
https://doi.org/10.1016/j.cej.....