PL EN
ORIGINAL PAPER
A case study of the temporal stability of soil electrical conductivity for a sandy field and the usefulness of its measurement for the preparation of agronomic category maps
 
More details
Hide details
1
Institute of Agriculture, Department of Agronomy, Warsaw University of Life Sciences, Polska
 
2
Institute of Agriculture, Department of Biometry, Warsaw University of Life Sciences, Polska
 
3
Faculty of Agriculture, Department of Biosystems Engineering, Hatay Mustafa Kemal University, Turkey
 
 
Submission date: 2025-02-14
 
 
Final revision date: 2025-05-17
 
 
Acceptance date: 2025-07-31
 
 
Online publication date: 2025-07-31
 
 
Publication date: 2025-07-31
 
 
Corresponding author
Stanisław Marek Samborski   

Institute of Agriculture, Department of Agronomy, Warsaw University of Life Sciences, Nowursynowska 159, 02-776, Warsaw, Polska
 
 
Soil Sci. Ann., 2025, 76(3)208825
 
KEYWORDS
ABSTRACT
One of the most commonly used sensing technologies to characterize soil spatial variability is on-the-go measurement of the apparent electrical conductivity (ECa). When properly calibrated to conventional soil properties, ECa measurements can help to create thematic soil maps that represent the variability of soil characteristics. Then, these maps, after reclassification, can be used for the creation of prescription maps for variable application of agricultural inputs, to increase their use efficiency. In the absence of salinity, ECa is strongly responsive to soil texture (ST), which is more stable over time than chemical soil properties. However, the temporal stability of soil ECa on commercial fields has not been investigated in Poland, which has a wide representation of very light and light soils. In our country, four soil agronomic categories (ACs) were distinguished, and they are derived from information on the content of fine particles (FPs, <0.02mm) in the soil. ACs have been used for the formulation of lime and fertilizer recommendations in our country and they are typically assigned through laboratory determinations of fine particle content or derived from soil agricultural maps. But, none of these approaches allows for the delineation of soil ACs with high spatial density required for the creation of maps for variable application of agricultural inputs. The objectives of the study were to: i) evaluate spatial and temporal variability of relative ECa values registered at two depths (0–30 and 0–90 cm), during eight ECa surveys for a commercial field of predominantly very light and light soils; ii) delineate soil ACs for this field based on the relationship between ECa values registered during two surveys done in a 10-year time interval, and fine particle content. The production field was characterized by high ECa spatial variability and stable temporal ECa patterns, suggesting that a single measurement of this soil property could be sufficient to delineate maps of soil physical characteristics strongly related to ECa on very light and light soils. A strong relationship between the relative ECsh values from 2013 and 2023, and fine soil particles allowed the creation of very similar maps of ACs, which may be used for formulating fertilizer and lime recommendations on fields covered with the above-mentioned types of soils. The soil ACs patterns were less repeatable across years (2013 vs. 2023), but acceptable for map generalization when the ECdp values were used for the prediction of FPs content from a thicker soil layer (0–90 cm). However, the wider application of achieved relationships may require field-specific calibrations of ECa values to ensure better accuracy of the delineated AC maps because this study was performed in a single production field.
REFERENCES (53)
1.
Adamchuk, V. et al., 2021. [In:] Kerry, R., Escolà, A. (Eds.), Sensing approaches for precision agriculture. Progress in Precision Agriculture. Springer, Cham, 93–132. https://doi.org/10.1007/978-3-....
 
2.
Adamchuk, V.I., Rossel, R.A.V., Sudduth, K.A., Lammers, P.S., 2011. Sensor fusion for preci-sion agriculture. [In:] Thomas, C. (Ed.), Sensor Fusion - Foundation and Applications. Intech Open, 27–40. https://doi.org/0.5772/19983.
 
3.
Adamchuk, V.I., Hummel, J.W., Morgan, M.T., Upadhyaya, S.K., 2004. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture 44, 71–91. https://doi.org/10.1016/j.comp....
 
4.
Ahrends, H.E., Simojoki, A., Lajunen, A., 2023. Spatial pattern consistency and repeatability of proximal soil sensor data for digital soil mapping. European Journal of Soil Science 74(5), e13409. https://doi.org/10.1111/ejss.1....
 
5.
Atwell, M.A., Wuddivira, M.N., 2019. Electromagnetic-induction and spatial analysis for as-sessing variability in soil properties as a function of land use in tropical savanna ecosystems. SN Applied Sciences 1, 856. https://doi.org/10.1007/s42452....
 
6.
Badewa, E., Unc, A., Cheema, M., Galagedar, L., 2019. Temporal stability of soil apparent electri-cal conductivity (ECa) in managed podzols. Acta Geophysica 67, 1107–1118. https://doi.org/10.1007/s11600....
 
7.
Blackmore, S., 2000. The interpretation of trends from multiple yield maps. Computers and Elec-tronics in Agriculture 26, 37–51. https://doi.org/10.1016/S0168-....
 
8.
Bioprodukty, 2013-2015. Unpublished results obtained during the realization of scientific project POIG.01.03.01-14-041/12—“BIOPRODUCTS, innovative technologies of prohealth bakery products and pasta with reduced caloric value”, co-financed by the European Regional Develop-ment Fund under the Innovative Economy Operational Programme 2007–2013.
 
9.
BN, 1978. BN-78/9180-11. Gleby i utwory mineralne. Podział na frakcje i grupy granulometrycz-ne. Norma branżowa.
 
10.
Bohling, G., 2005. Introduction to geostatistics and variogram analysis. Available at: http://gismyanmar.org/geofocus....
 
11.
Bottega, E.L., Queiroz, D.M., Pinto, F.D., Souza, C.M., Valente, D.S., 2017. Precision agriculture applied to soybean: Part I - Delineation of management zones. Australian Journal of Crop Science 11, 573–579. https://doi.org/10.21475/ajcs.....
 
12.
Brevik, E.C., Fenton, T.E., Lazari, A., 2006. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agriculture 7, 393–404. https://doi.org/10.1007/s11119....
 
13.
Corwin, D.L., Scudiero, E., 2020. Field-scale apparent soil electrical conductivity. Soil Science of America Journal 84, 1405–1441. https://doi.org/10.1002/saj2.2....
 
14.
Corwin, D.L., Lesch, S.M., 2003. Application of soil electrical conductivity to precision agricul-ture: theory, principles, and guidelines. Agronomy Journal 95, 455–471. https://doi.org/10.2134/agronj....
 
15.
De Caires, S.A., Wuddivira, M.N., Bekele, I., 2014. Assessing the temporal stability of spatial patterns of soil apparent electrical conductivity using geophysical methods. International Agrophy-sics 28(4), 423–433. https://doi.org/10.2478/intag-....
 
16.
de Farias, M.F. et al., 2018. Potassium fertilization in soybean and its correlation with electrical conductivity in soil. Journal of Agricultural Science 10(12), 336–343. https://doi.org/10.5539/jas.v1....
 
17.
Farahani, H.J., Buchleiter, G.W., 2004. Temporal stability of soil electrical conductivity in irrigated sandy fields in Colorado. Transactions of the American Society of Agricultural Engineers 47(1), 79–90. https://doi.org/10.13031/2013.....
 
18.
Fotyma, E., Wilkos, G., Pietruch, Cz., 1998. Test glebowy azotu mineralnego – możliwości prak-tycznego wykorzystania, Materiały Szkoleniowe IUNG, Puławy.
 
19.
QGIS.org, 2022. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.org. Accessed 3 January 2025.
 
20.
Gonçalves, L.A., de Souza, E.G., Nóbrega, L.H.P., Bier, V.A., Magii, M.F., Bazzi, C.L., Uribe-Opazo, M.A., 2025. Spatial and temporal variability of soil apparent electrical conductivity. Preci-sion Agriculture 26, 10. https://doi.org/10.1007/s11119....
 
21.
Grains Research and Development Corporation, 2023. An overview of the different proximal soil sensing systems available to Australian growers, and for use in precision agriculture. Proximal soil sensing systems. Fact Sheet. SPA2201-001SAX.
 
22.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps 4th edition. International Union of Soil Sciences, IUSS, Vienna, Austria, 1–236.
 
23.
Jadczyszyn, T., Kowalczyk, J., Lipiński, W., 2010. Zalecenia nawozowe dla roślin uprawy polowej i trwałych użytków zielonych. Materiały szkoleniowe Nr 95, IUNG Puławy.
 
24.
Jadczyszyn, J., Niedźwiecki, J., Debaene, J., 2016. Analysis of agronomic categories in different soil texture classification systems. Polish Journal of Soil Science 20, 49–72. https://doi.org/10.17951/pjss/....
 
25.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. https://doi.org/10.2478/ssa-20....
 
26.
Liao, K.H., Zhu, Q., Doolittle, J., 2014. Temporal stability of apparent soil electrical conductivity measured by electromagnetic induction techniques. Journal of Mountain Science 11(1). https://doi.org/10.1007/s11629....
 
27.
Łopatka, A., 2017. Europejski monitoring użytkowania gruntów i baza danych projektu LUCAS. Studia i Raporty IUNG-PIB 51(5), 73–89.
 
28.
Lueck, E., 2015. The influence of fertilization on electrical conductivity data. First Conference on Proximal Sensing Supporting Precision Agriculture 1, 1–5. https://doi.org/10.3997/2214-4....
 
29.
Mat Su, AS., Adamchuk, VI., 2023. Temporal and operation-induced instability of apparent soil electrical conductivity measurements. Frontiers in Soil Science. 3, 1137731. https://doi.org/10.3389/fsoil....
 
30.
McCutcheon, M.C., Farahani, H.J., Stednick, J.D., Buchleiter, G.W., Green, T.R., 2006. Effect of soil water on apparent soil electrical conductivity and texture relationships in dryland field. Biosystems Engineering 94(1), 19–32. https://doi.org/10.1016/j.bios....
 
31.
McKenzie, N., Bramley, R., Farmer, T., Janik, L., Murray, W., Smith, Ch., McLaughlin, M., 2003. Rapid soil measurement – a review of potential benefits and opportunities for the Australian grains industry. Report for the Grains Research and Development Corporation. pp. 41.
 
32.
Molin, J.P., Faulin, G.D. Ch., 2013. Spatial and temporal variability of soil electrical conductivity related to soil moisture. Scientia Agricola 70(1), 1–5. https://doi.org/10.1590/S0103-....
 
33.
Nyéki, A., Daróczy, B., Kerepesi, C., Neményi, M., Kovács, A.J., 2022. Spatial variability of soil properties and its effect on maize yields within field – a case study in Hungary. Agronomy 12(2), 395. https://doi.org/10.3390/agrono....
 
34.
Pedrera-Parrilla, A., Brevik, E.C., Giráldez, J.V., Vanderlinden, K., 2016. Temporal stability of electrical conductivity in a sandy soil. International Agrophysics 30, 349–357. https://doi.org/10.1515/intag-....
 
35.
Pierce, F.J., Nowak, P., 1999. Aspects of precision agriculture. Advances in Agronomy 67, 1–85. https://doi.org/10.1016/S0065-....
 
36.
Pimentel-Gomes, F., 2023. Curso De estatística experimental. Digitaliza Conteúdo.
 
37.
Richling, A., 2021. Charakterystyka prowincji i podprowincji (Description of provinces and sub-provinces). [In:] Richling, A., Solon, J., Macias, A., Balon, J., Borzyszkowski, J., Kistowski, M. (Eds.), Regionalna geografia fizyczna Polski. Bogucki Wyd. Naukowe, Poznań, 39–65.
 
38.
Stępień, M., Samborski, S., 2018. Ocena właściwości gleby na potrzeby rolnictwa precyzyjnego [In:] Samborski, S. (Ed.). Rolnictwo precyzyjne. Wydawnictwo Naukowe PWN S.A., Warsaw, Poland, pp. 1–522. (in Polish).
 
39.
Sarnacka, Z., 1976. Szczegółowa mapa geologiczna Polski 1:50 000. Arkusz 560 Piaseczno. PIG. Scan of the map was downloaded from CBDG (Central Geological Database): https://baza.pgi.gov.pl/resour....
 
40.
Serrano, J.M., Shahidian, S., Marques da Silva, J., 2017. Spatial variability and temporal stability of apparent soil electrical conductivity in a Mediterranean pasture. Precision Agriculture 18, 245–263. https://doi.org/10.1007/s11119....
 
41.
Serrano, J., Shahidian, S., Silva, J.M., Paniágua, L.L., Rebollo, F.J., Moral, F.J., 2024. Temporal stability of management zone patterns: case study with contact and non-contact soil electrical conductivity sensors in dryland pastures. Sensors 24, 1623. https://doi.org/10.3390/s24051....
 
42.
Solon, J., et al.,2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143–170. https://doi.org/10.7163/GPol.0....
 
43.
Stępień, M., Gozdowski, D., Bodecka, E., Groszyk, J., Rozbicki, R., Samborski, S., 2017. Topsoil texture maps based on calibration of soil electrical conductivity with soil datasets varying in size. Polish Journal of Soil Science 50(2), 265–278. https://doi.org/10.17951/pjss/....
 
44.
Stępień, M., Gozdowski, D., Samborski, S., 2024a. Możliwości przypisania zawartości frakcji granulometrycznych według PTG 2008/USDA do wybranych grup granulometrycznych PTG 1956 wyróżnionych na mapie glebowo-rolniczej. Soil Science Annual 75(3), 183375. https://doi.org/10.37501/soils....
 
45.
Stępień, M., Gozdowski, D., Samborski, S., 2024b. How Accurately Is Topsoil Texture Shown on Agricultural Soil Maps? A Case Study of Eleven Fields Located in Poland. Land 13, 1852. https://doi.org/10.3390/land13....
 
46.
Stępień, M., Samborski, S., Gozdowski, D., Dobers, E. S., Chormański, J., Szatyłowicz, J., 2015. Assessment of soil texture class on agricultural fields using ECa, Amber NDVI, and topographic properties. Journal of Plant Nutrition and Soil Science 178(3), 523–536. https://doi.org/10.1002/jpln.2....
 
47.
Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy, Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław-Warszawa, pp. 235.
 
48.
Terrón López, J. M., 2013. Delimitación de zonas de manejo en agricultura de precisión a partir de medidas de conductividad eléctrica aparente del suelo mediante el uso de sensores móviles de contacto. PhD thesis, University of Córdoba. Available at: https://helvia.uco.es/handle/1....
 
49.
Terrón, J., Moral, F., da Silva, J. M., Rebollo, F., 2013. Analysis of spatial pattern and temporal stability of soil apparent electrical conductivity and relationship with yield in a soil of high clay content. In 3rd Global Workshop on Proximal Soil Sensing, 302–306.
 
50.
Veris Technologies. Pub. #AN 1CM02-5.
 
51.
Witek, T., 1973. Mapy glebowo-rolnicze oraz kierunki ich wykorzystania. Instytut Uprawy, Nawożenia i Gleboznawstwa, Puławy. PWRiL, Warszawa, 75 ss. Available at: https://www.gov.pl/web/gugik/m..., Accessed 15 January 2025.
 
52.
Zalecenia Nawozowe Cz. I. Liczby Graniczne do Wyceny Zawartości Makro-i Mikroelementów w Glebach, 2nd ed., 1990. Instytut Uprawy Nawożenia i Gleboznawstwa, Puławy, Poland, 1–28.
 
53.
Zhu, Q., Lin, H., Doolittle, J., 2010. Repeated electromagnetic induction surveys for improved soil mapping in an agricultural landscape. Soil Science Society of America Journal 74(5), 1763–1774. https://doi.org/10.2136/sssaj2....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top