PL EN
ORIGINAL PAPER
Assessment of the effect of intensive agricultural production on nutrient movement in soil
,
 
 
 
More details
Hide details
1
Warsaw University of Life Science, Institute of Agriculture, Division of Agricultural and Environmental Chemistry, ul. Nowoursynowska 159, 02-776 Warszawa, Poland
 
 
Submission date: 2023-01-09
 
 
Final revision date: 2023-04-02
 
 
Acceptance date: 2023-08-28
 
 
Online publication date: 2023-08-28
 
 
Publication date: 2023-09-15
 
 
Corresponding author
Karol Siewruk   

Instytut Rolnictwa, Samodzielny Zakład Chemii Rolniczej i Środowiskowej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 164, 02-776, Warszawa, Polska
 
 
Soil Sci. Ann., 2023, 74(3)171629
 
KEYWORDS
ABSTRACT
The objective of the paper was to investigate the abundance of available forms of macroelements in the subsoil on land under intensive use, and to assess whether deeper soil layers can serve a function in the nutrition of crops. Samples were collected for layers: 0–25, 26–50, and 51–75 cm from 8 boreholes with a diameter of 20 cm, whereas samples were collected from opposite walls of two of them. The pH value of all collected samples and the content of available forms of macronutrients: mineral nitrogen, phosphorus, potassium, magnesium and calcium were examined. Then the mean content of nutrients was compared by each layer. The Mehlich-3 method was used for the extraction of P, K, Mg and Ca, then the content was determined by the atomic absorption spectrometry (AAS) method. The spectrophotometric measurement of mineral nitrogen was made using a Solar flow analyzer with a cadmium column. Nitrogen extraction was performed from dry soil using a 1% K2SO4 solution in a soil-solution ratio of 1:10. In the statistical analysis, the average contents of components and pH in individual layers were compared using Tukey's test (p=0.05). The obtained results show a trend for transport down the soil profile of phosphorus, calcium, and magnesium. The study evidences that the application of mineral fertilisers increases the abundance of nutrients in soils at the analysed depths, and crop rotation should involve deep-rooting crops that can efficiently use the subsoil as a source of nutrients. Proper arrangement of crop rotation with deep-rooting species can contribute to a reduction of leaching of nutrients. This should translate into more efficient use of fertilisers, and therefore less dispersal of nutrients in the environment, as well as increased economic benefits.
 
REFERENCES (36)
1.
Bartoszewicz, J., Karp, E., 2010. Desorption of phosphate (V) ions from brown soil. Journal of Elementology 15(1), 19-29. https://doi.org/10.5601/jelem.....
 
2.
Chowaniak, M., Klima, K., Niemiec, M., 2016. Impact of slope gradient, tillage system and plant cover on soil loses of Calcium and magnesium. Journal of Elementology 21(2), 361–372, https://doi.org/10.5601/jelem.....
 
3.
Cordell, D., Neset, T.S.S., Prior, T., 2012. The phosphorus mass balance: identifying’ hotspots’ in the food system as a roadmap to phosphorus security. Current Opinion in Biotechnology 23(6), 839–845. https://doi.org/10.1016/j.copb....
 
4.
Correndo, A.A., Rubio, G., García, F.O., Ciampitti I.A., 2021. Subsoil-potassium depletion accounts for the nutrient budget in high-potassium agricultural soils. Scientific Reports 11, 11597. https://doi.org/10.1038/s41598....
 
5.
Costa, M.C.G., Coutinho, Í.A.C., 2022. Root Systems of Agricultural Crops and Their Response to Physical and Chemical Subsoil Constraints. In: Oliveira, T.S.d., Bell, R.W. (eds) Subsoil Constraints for Crop Production . Springer, Cham. https://doi.org/10.1007/978-3-....
 
6.
Czyżewski, A., Staniszewski, J., 2018. Zrównoważona intensyfikacja rolnictwa jako kombinacja efektywności nakładów ekonomicznych i środowiskowych. Problemy Rolnictwa Światowego tom 18(XXXIII), zeszyt 3, 80–90. https://doi.org/10.22630/PRS.2....
 
7.
Dijkstra, F.A., Smits, M.M., 2002. Tree Species Effects on Calcium Cycling: The Role of Calcium Uptake in Deep Soils. Ecosystems 5, 385–398. https://doi.org/10.1007/s10021....
 
8.
Fotyma, M., Kęsik, K., Lipiński, W., Filipiak, K., Purchała, L., 2015. Testy glebowe jako podstawa doradztwa nawozowego. Studia i Raporty IUNG-PIB, Zeszyt 42(16), 9-51, ISBN 978-83-7562-185-3.
 
9.
Gorlach, E., Grzywnowicz, J.,1989. Distribution of various nitrogen forms in the soil profit and their relationship with nitrogen taken up by plants. Polish Journal of Soil Science 23, 43-49.
 
10.
Gransee, A., Führs, H., 2013. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil 368, 5–21. https://doi.org/10.1007/s11104....
 
11.
Grzebisz, W., Diatta, J.B., Szczepaniak, W.,2006. Produkcyjne i ekologiczne uwarunkowania wapnowania gleb gruntów ornych. Nawozy i Nawożenie, Nr 2 (27).
 
12.
Grzegorczyk, S., Alberski, J., Olszewska, M., 2013. Accumulation of potassium, calcium and magnesium by selected species of grassland legumes and herbs. Journal of Elementology 18(1), 69–78. https://doi.org/10.5601/jelem.....
 
13.
Heinemann, P., Schmidhalter, U., 2021. Simplifying residual nitrogen (Nmin) sampling strategies and crop response. European Journal of Agronomy 130. https://doi.org/10.1016/j.eja.....
 
14.
Jalali, M., Rowell, D., 2003. The role of calcite and gypsum in the leaching of potassium in a sandy soil. Experimental Agriculture 39(4), 379–394. https://doi.org/10.1017/S00144....
 
15.
Jobbágy, E.G., Jackson, R.B., 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53, 51–77. https://doi.org/10.1023/A:1010....
 
16.
Kępka, M., 1968, Wapń, potas i magnez w niektórych glebach Niziny Mazowieckiej wytworzonych z piasków różnego pochodzenia geologicznego. Roczniki Gleboznawcze – Soil Science Annual 18(2), 449–465.
 
17.
Kęsik, K., Jadczyszyn, T., Lipiński W., Jurga B., 2015, Adaptation of the Mehlich-3 procedure for routine determination of phosphorus, potassium and magnesium in soil. Przemysł Chemiczny 94, 973–976. https://doi.org/10.15199/62.20....
 
18.
Khan, A., Lu, G., Zhang, H., Wang R., Lv F., Xu J., Yang X., Zhang S., 2019. Land Use Changes Impact Distribution of Phosphorus in Deep Soil Profile. Journal of Soil Science and Plant Nutrition 19, 565–573. https://doi.org/10.1007/s42729....
 
19.
Kopeć, S., 2007. Wpływ nawożenia mineralnego użytków rolnych na zanieczyszczenie wód składnikami nawozowymi. Państwo i Społeczeństwo, VII, nr 4.
 
20.
Korzeniowska, J., Stanisławska-Glubiak, E., Lipiński W., 2019. Opracowanie liczb granicznych niedoboru mikroelementów w glebie przy użyciu ekstrahenta Mehlich 3 dla polskich warunków glebowych. Część I. Pszenica. Roczniki Gleboznawcze – Soil Science Annuaaul 70(4), 314–323. https://doi.org/10.2478/ssa-20....
 
21.
Kuhlmann, H., 1990. Importance ofod the subsoil for the K nutrition of crops. Plant and Soil 127, 129-136.
 
22.
Lampkin, N.H. et al., 2015. The role of agroecology in sustainable intensification. Report for the Land Use Policy Group. Organic Research Centre, Elm Farm and Game & Wildlife Conservation Trust. S. 9. https://www.nature.scot/sites/....
 
23.
Lipiński, W., 2019. Agrochemiczne właściwości gleb użytkowanych rolniczo. Ecological Egnineering 20(1), 1–12. https://doi.org/10.12912/23920....
 
24.
Maciel de Oliveira, S., et al., 2020. Vertical stratification of K uptake for soybean-based crop rotation. Nutrient Cycling in Agroecosystems 117, 185–197. https://doi.org/10.1007/s10705....
 
25.
Nasternak, M., 2022. Kiedy i jak pobierać próbki glebowe?. Strona internetowa Mazowieckiego Ośrodka Doradztwa Rolniczego w Warszawie. https://www.modr.mazowsze.pl/p....
 
26.
Niedźwiecki, J., Deabaene, G., Pecio, A., 2015. Klasyczne i zaawansowane metody badania przestrzennego zróżnicowania żyzności gleb i łanu roślin. Studia i Raporty IUNG-PIB Zeszyt 42(16), 69-90.
 
27.
Orzechowski, M., Smólczyński, S., 2010. Content of Ca, Mg, Na, K, P, Fe, Mn, Zn, Cu in soils developed form the Holocene deposits in northern-eastern Poland. Journal of Elementology 15(1), 149-159. https://doi.org/10.5601/jelem.....
 
28.
Panday, D., Ojha, R.B., Chalise, D., Das, S., Twanabasu, B., Moral, M.T., 2019. Spatial varability of soil properties under Different land use in the Dang district of Nepal. Cogent Food & Agriculture 5(1). https://doi.org/10.1080/233119....
 
29.
Pietrzak, S., 2013. Bilansowanie składników nawozowych i gospodarowanie nawozami naturalnymi a ochrona jakości wody. Centrum Doradztwa Rolniczego w Brwinowie. Brwinów. ISBN: 978-83-63411-10-7. S. 20.
 
30.
Podleśna, A., 2019. Czynniki kształtujące pobieranie i wykorzystanie fosforu przez rośliny oraz jego straty z gleb uprawnych. Studia i Raporty IUNG-PIB, zeszyt 59(13), 59-76.
 
31.
Raziel, A. Ordóñez, et al. 2018. Maize and soybean root front velocity and maximum depth in Iowa, USA. Field Crops Research 215, 122–131, https://doi.org/10.1016/j.fcr.....
 
32.
Rocznik Statystyczny Rolnictwa, 2021. Główny Urząd Statystyczny, Warszawa, 81-85, https://stat.gov.pl/obszary-te....
 
33.
Stępień, W, Mercik, S., 1999. Zmiany zawartości fosforu i potasu w glebie oraz plonowanie roślin na przestrzeni 30-tu lat na glebie nawożonej i nienawożonej tymi składnikami. Zeszyty Problemowe Postępów Nauk Rolniczych 467, 269–278.
 
34.
United Nations Development Programme, Sustainable Development Goals 2030, https://www.undp.org/sustainab...,.
 
35.
Ziadi, N., Sen Tran, T., 2008. Mehlich-3 extractable elements. [In:] Soil Sampling and Methods of Analysis (Carter M.R., Gregorich E.G., Editors). CRC Press, Boca Raton, 81–87.
 
36.
Żyrnicki, W., Borkowska-Burnecka, J., Bulska, E., Szmyd, E., 2010. Metody Analitycznej Spektrometrii Atomowej. Wydawnictwo Malamut, Warszawa.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top