Faculty of Agronomy and Plant Protection/chair of Farming and Herbology named after O. M. Mozheiko, State Biotechnological University, Ukraine
CORRESPONDING AUTHOR
Zinaida Dehtiarova
Faculty of Agronomy and Plant Protection/chair of Farming and Herbology named after O. M. Mozheiko, State Biotechnological University, p/o Dokuchaevske, 62483, Kharkiv, Ukraine
The article presents the results of the 2020‒2021 research carried out in the experimental field of Kharkiv National Agrarian University named after V. V. Dokuchaev, located in the area of the Left Bank Forest-Steppe of Ukraine. We aimed to find out whether the cellulosolytic activity of the soil depends on the increase in the proportion of sunflower in short-term crop rotations. The climate of the region is moderately continental with insufficient and unstable level of hydration. The influence of short-term crop rotations with different sunflower saturation on the degree of cellulosolithic activity of the arable soil layer were studied. The study of the general cellulosolytic activity of the soil was carried out by the method that is based on the intensity of cellulose decomposition. Probably activity of cellulosolithic microorganisms depends not only on the weather and climatic conditions and certain agrophysical indicators of soil fertility, but also on the amount of plant remains left by the sunflower. The higher the percentage of saturation of crop rotation with sunflower is the higher is the intensity of the decomposition of the canvas. On average, over the years of research, the highest intensity of development of cellulose-destroying microorganisms (28.6%) in the arable soil layer (0‒30 cm) was in the field of five-field crop rotation, where the share of sunflower was 60%. Although clean fallow contributes to the accumulation of moisture in the soil, practically the absence of plants does not ensure its cellulosolithic activity. Research showed that fallow and sunflower have different effects on soil moisture. The crop rotation field with 20% sunflower saturation in the 0-30 cm layer of soil contained the maximum – 15.6% of moisture.
REFERENCES(55)
1.
Adl, S.M., 2003. The ecology of soil decomposition. CABI.
Bastida, F., Moreno, J. L., Hernandez, T., García, C., 2006. Microbiological activity in a soil 15 years after its devegetation. Soil Biology and Biochemistry 38(8), 2503‒2507. https://doi.org/10.1016/j.soil....
Bottner, P., 1985. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C-and 15N-labelled plant material. Soil Biology and Biochemistry 17(3), 329–337. https://doi.org/10.1016/0038-0....
Brockett, B. F., Prescott, C. E., Grayston, S. J., 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry 44(1), 9‒20. https://doi.org/10.1016/j.soil....
Demydenko, O. V., 2013. Fiziolohichna aktyvnist silskohospodarskykh kultur ta vidtvorennia rodiuchosti chornozemiv v ahrotsenozakh [Physiological activity of agricultural crops and reproduction of chernozem fertility in agrocenoses]. Fiziolohiia i biokhimiia kulturnykh roslyn 45(3), 213–221. (in Ukrainian).
Ellanska, N. E., Karpenko, O. Yu., Yunosheva, O. P., Khokhlova, I. H., 2008. Aktyvnist mikrobnoho uhrupovannia ryzosfery kukurudzy za riznykh typiv sivozmin [The activity of the microbial grouping of the rhizosphere of maize in different types of crop rotations]. Silskohospodarska mikrobiolohiia 7, 29–35. (in Ukrainian).
Fenoy, E., Casas, J. J., Díaz-López, M., Rubio, J., Guil-Guerrero, J. L., Moyano-López, F. J., 2016. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS microbiology ecology 92(11). https://doi.org/10.1093/femsec... , Epub 2016 Aug 10.
Gupta, P., Samant, K., Sahu, A., 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology. https://doi.org/10.1155/2012/5....
Hackl, E., Pfeffer, M., Donat, C., Bachmann, G., Zechmeister-Boltenstern, S., 2005. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology and Biochemistry 37(4), 661‒671. https://doi.org/10.1016/j.soil....
Hanhur, V. V., 2019. Ahrobiolohichni osnovy formuvannia sivozmin korotkoi rotatsii v Livoberezhnomu Lisosotepu Ukrainy [Agrobiological bases of formation of crop rotations of short rotation in the Left-Bank Forest-steppe of Ukraine]. (Doctor’s thesis). National Scientific Center «Institute of Agriculture of the National Academy of Agricultural Sciences of Ukraine». Chabany. (in Ukrainian).
Hatami, S., Alikhani, H. A., Besharati, H., Salehrastin, N., Afrousheh, M., Yazdani, Z. J., Jahromi, Z., 2008. Investigation on aerobic cellulolytic bacteria in some of north forest and farming soils. American-Eurasian Journal of Agricultural and Environmental Sciences 3(5), 713–716.
Hepenko, O.V., 2013. Tseliulozolitychna aktyvnist gruntu v riznykh korotkorotatsiinykh sivozminakh [Cellulolytic activity of soil in different short-term crop rotations.]. Visnyk Kharkivskoho natsionalnoho ahrarnoho universytetu imeni V. V. Dokuchaieva. Gruntoznavstvo, ahrokhimiia, zemlerobstvo, lisove hospodarstvo, ekolohiia gruntiv, 1, 176–180. (in Ukrainian).
Karaca, A., Cetin, S. C., Turgay, O. C., Kizilkaya, R., 2010. Soil enzymes as indication of soil quality. [In] Soil enzymology 22, 119–148. https://doi.org/10.1007/978-3-....
Kaziuta, A. O., Yaremenko, M. O., 2020. Tseliulazna aktyvnist chornozemu typovoho pid soniashnykom [Cellulase activity of typical chernozem under sunflower]. Naukovi zasady pidvyshchennia efektyvnosti silskohospodarskoho vyrobnytstva, materialy IV Mizhnarodnoi naukovo-praktychnoi konferentsii [Scientific basis to raise agricultural production effectiveness, Proceedings of the 4th International Scientific and Practical Conference]. Kharkiv: KhNAU, 277–279. (in Ukrainian).
Kieft, T. L, Soroker, E., Firestone, M. K., 1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry 19(2), 119–126. https://doi.org/10.1016/0038-0....
Kovalov, V. B., Trembitska, O. I., Radko, T. V., 2015. Biolohichna aktyvnist gruntu za orhanichnoi systemy vyroshchuvannia kultur u korotkorotatsiinii sivozmini [Biological activity of the soil under the organic system of growing crops in short-term crop rotation]. Ahropromyslove vyrobnytstvo Polissia, 8, 15–20. (in Ukrainian).
Kurdysh, I.K., 2009. Rol mikroorhanizmiv u vidtvorenni rodiuchosti gruntiv [The role of microorganisms in the reproduction of soil fertility]. Zahalna i gruntova mikrobiolohiia 9, 7–32. (in Ukrainian).
Lebid, Ye. M., 2006. Naukovyi fundament problem stepovoho zemlerobstva [The scientific foundation of the problems of steppe agriculture]. Visnyk ahrarnoi nauky 3–4, 23–25. (in Ukrainian).
Li, H., Wang, J., Liu, Q., Zhou, Z., Chen, F., Xiang, D., 2019. Effects of consecutive monoculture of sweet potato on soil bacterial community as determined by pyrosequencing. Journal of Basic Microbiology 59(2), 181‒191. https://doi.org/10.1002/jobm.2....
Lithourgidis, A. S., Damalas, C. A., Gagianas, A. A., 2006. Long-term yield patterns for continuous winter wheat cropping in northern Greece. European Journal of Agronomy 25(3), 208‒214. https://doi.org/10.1016/j.eja.....
Manzoni, S., Porporato, A., 2009. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology and Biochemistry 41(7), 1355‒1379. https://doi.org/10.1016/j.soil....
Paul, K.I., Polglase, P.J., O’Connell, A.M., Carlyle, J.C., Smethurst, P.J., Khanna, P. K., 2003. Defining the relation between soil water content and net nitrogen mineralization. European Journal of Soil Science 54(1), 39–48. https://doi.org/10.1046/j.1365....
Philippot, L., Raaijmakers, J.M., Lemanceau, P., van der Putten, W.H., 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology 11, 789–799. https://doi.org/10.1038/nrmicr....
Prescott, C.E., Blevins, L.L., Staley, C., 2004. Litter decomposition in British Columbia forests: controlling factors and influences of forestry activities. BC J. Ecosyst. Manage, 5(2), 44‒57.
Shykula, M. K., Demydenko, O.V., 2000. Dyskretnist zminy rivnia rodiuchosti chornozemu pid vplyvom hruntozakhysnykh tekhnolohii biolohichnoho zemlerobstva [Discreteness of changes in the level of chernozem fertility under the influence of soil protection technologies of organic farming]. Hruntozakhysna biolohichna systema zemlerobstva v Ukraini. Kyiv: Oranta, 245–259. (in Ukrainian).
Skopp, J., Jawson, M.D., Doran, J.W., 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal 54(6), 1619–1625. https://doi.org/10.2136/sssaj1....
Sozinov, O.O., Prister, B.S. (Eds.), 1994. Metodyka sutsilnoho gruntovo-ahrokhimichnoho monitorynhu silskohospodarskykh uhid Ukrainy [Methods of continuous soil and agrochemical monitoring of agricultural lands of Ukraine]. Kyiv. (in Ukrainian).
Stuart Chapin III, F., McFarland, J., David McGuire, A., Euskirchen, E. S., Ruess, R. W., Kielland, K., 2009. The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. Journal of Ecology 97(5), 840‒850. https://doi.org/10.1111/j.1365....
Symochko, L. Yu., 2008. Biolohichna aktyvnist gruntu pryrodnykh ta antropohennykh ekosystem v umovakh nyzynnoi chastyny Zakarpattia [Biological activity of soil of natural and anthropogenic ecosystems in the lowlands of Transcarpathia]. Naukovyi visnyk Uzhhorodskoho u niversytetu. Uzhhorod, 22, 152–154. (in Ukrainian).
Tishchenko, L.M. et al., 2015. Tekhnolohichni karty vyroshchuvannia silskohospodarskykh kultur [Technological maps of growing crops]. [In:] Tishchenko, L. M., Korniienko, S. I. (Eds.). Kharkiv: KhNTUSH. (in Ukrainian).
Tsentylo, L.V., 2019. Biolohichna aktyvnist gruntu za riznykh system udobrennia soniashnyku ta obrobitku gruntu [Biological activity of soil under different systems of sunflower fertilization and tillage]. Tavriiskyi naukovyi visnyk. Zemlerobstvo, roslynnytstvo, ovochivnytstvo ta bashtannytstvo 108, 117–122. https://doi.org/10.32851/2226-... (in Ukrainian).
Tsyliuryk, O.I., Kulik, A.F., Honchar, N.V., 2017. Biolohichna aktyvnist gruntu za riznykh sposobiv yoho obrobitku ta udobrennia v posivakh soniashnykuiu [Biological activity of soil by different methods of its cultivation and fertilization in sunflower crops.]. Visnyk Dnipropetrovskoho derzhavnoho ahrarno-ekonomichnoho uhiversytetu. Silskohospodarska ekolohiia. Ahronomichni nauky 2, 42–48. (in Ukrainian).
Tykhonenko, D.H., Dehtiarov, Yu. V., 2016. Gruntovyi pokryv doslidnoho polia «Rohanskoho statsionaru» Kharkivskoho NAU im. V. V. Dokuchaieva [Soil cover of the research field "Rogansky hospital" of Kharkiv NAU named after V. V. Dokuchaev]. Visnyk KhNAU imeni V. V. Dokuchaieva. Gruntoznavstvo, ahrokhimiia, zemlerobstvo, lisove hospodarstvo 2, 5‒15. (in Ukrainian).
Woźniak, A., Soroka, M., 2018. Effect of crop rotation and tillage system on weed infestation and yield of spring wheat and on soil properties. Applied Ecology and Environmental Research 16, 3087–3096. doi.org/10.15666/aeer/1603_30873096.
Varbanets, L. D., Borzova, N. V., 2010. Hlikozydazy mikroorhanizmiv i metody yikh doslidzhennia [Glycosidases of microorganisms and methods of their research]. Kyiv: Naukova dumka. (in Ukrainian).
Vostrykova, V.M., 2012. Analiz patohennoho vplyvu tseliuloz hrybiv rodu Fusarium na tseliulozovmisni materialy [Analysis of the pathogenic effect of celluloses of fungi of the genus Fusarium on cellulose-containing materials]. Problemy ekolohichnoi biotekhnolohii, 2, 130–138. (in Ukrainian).
Yan, N., Marschner, P., Cao, W., Zuo, C., Qin, W., 2015. Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316–323. https://doi.org/10.1016/j.iswc....
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.