PL EN
ORIGINAL PAPER
The impact of erosion on the spatial variability of main properties, genesis, and systematic position of soils in the Wieliczka Foothills, southern Poland – a case study from the Bemke Campus area
 
More details
Hide details
1
Nicolaus Copernicus University in Torun, Department of Soil Science and Landscape Ecology, Lwowska 1, 87-100, Toruń, Poland
 
 
Submission date: 2025-05-06
 
 
Final revision date: 2025-07-11
 
 
Acceptance date: 2025-08-25
 
 
Online publication date: 2025-08-25
 
 
Publication date: 2025-08-25
 
 
Corresponding author
Marcin Świtoniak   

Faculty of Earth Sciences and Spatial Management, Department of Soil Sciences and Landscape Ecology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Polska
 
 
Soil Sci. Ann., 2025, 76(3)209899
 
KEYWORDS
ABSTRACT
Clay-illuvial soils (PSC, 2019) and their main equivalents in the WRB classification (IUSS Working Group WRB, 2022): Luvisols and Retisols, constitute a fundamental component of Poland’s soil cover. Erosional processes, intensified in agricultural areas with diverse relief, lead to substantial transformations of their profiles. As a result of erosional truncation, these soils often become morphologically similar to brown soils (Cambisols). Previous studies from the Carpathian Foothills region indicate a significant presence of both clay-illuvial soils (Luvisols/Retisols), including eroded ones and brown soils (Cambisols). However, distinguishing between these soils can still be problematic. The aim of this study was to assess the impact of erosional processes on the spatial variability of the soil cover in the western part of the Wieliczka Foothills. In particular, the focus was on identifying the main soil types (differentiating between eroded clay-illuvial and brown soils) and relating their properties to slope morphometry and the intensity of erosional transformations. The research was conducted in the western part of the Wieliczka Foothills, on the Bemke Campus in Klecza Dolna. This area is characterized by varied topography, the presence of loess-like covers, and intensive agricultural use. All the soils studied exhibited argik (PSC, 2019) / argic (IUSS Working Group WRB, 2022) illuvial Bt horizons. In the upper, less inclined parts of the slopes, eluvial horizons have been preserved, whereas on steeper slopes the Bt horizons lie directly beneath the humus horizon. The shape of the landforms (long and straight, transfer-type slopes) limited the intensity of erosion, which resulted in the absence of completely eroded soils and the preservation of relatively good quality surface humus horizons, regardless of stage of truncation and slope position. The stocks of organic carbon in the surface layer were higher than in comparable soils of the young-glacial regions of northern Poland. The results indicate the need to expand the research to a larger area of Carpathian Foothills and to undertake more detailed comparative analyses.
REFERENCES (92)
1.
Bajgier, M., 1992. Relief of Pogórze Wielickie with particular interest in present slope processes in the surroundings of Dobczyce Reservoir. Rocznik Naukowo-Dydaktyczny. Z. 151, Prace Geograficzne 14, 33–61. (in Polish with English abstract).
 
2.
Balon, J., Jodłowski, M., Krąż, P., 2022. Pogórze Wielickie (513.33) [in:] Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., Kistowski M. (red.). Regionalna geografia fizyczna Polski. Bogucki Wyd. Naukowe, Poznań, 191–198.
 
3.
Bauziene, I, Świtoniak, M., Charzyński, P., 2008. Properties of deluvial soils in Poland and Lithuania and propositions for their classification. Žemės ūkio mokslai 15, 3, Wilno, 29–35.
 
4.
Białousz, S., Różycki, S., 2015. Poland. Soil types, 1:2500000. The map attached to: Mocek, A. (editor), 2015. Gleboznawstwo. Wydawnictwo Naukowe PWN SA, Warszawa.
 
5.
Cieszkowski, M., Golonka, J., Waśkowska-Oliwa, A., Chrustek, M., 2006. Geological structure of the Sucha Beskidzka region – Świnna Poręba (Polish Flysch Carpathians). Geologia 32(2), 155–201. (in Polish with English abstract).
 
6.
Drużkowski, M., 2001. Current and forecast aspects of the functioning of the Carpathian Foothills landscape. Problemy Ekologii Krajobrazu 10, 599–606. (in Polish with English abstract).
 
7.
Gajewski, P., Kaczmarek, Z., Owczarek, W., Grzelak, M., 2007. Saturated hydraulic conductivity in the Luvisols formed from the bottom moraine loams. Roczniki Gleboznawcze – Soil Science Annual 55(2), 311–320. (in Polish with English abstract).
 
8.
Glina, B., Waroszewski, J., Kabała, C., 2014. Water retention of the loess-derived Luvisols with lamellic illuvial horizon in the Trzebnica Hills (SW Poland). Soil Science Annual 65(1), 18–24. https://doi.org/10.2478/ssa-20....
 
9.
Gobin, A., Govers, G., Jones, R.J.A., Kirkby, M.J., Kosmas, C., 2003. Assessment and reporting on soil erosion: Background and workshop report. EEA Technical Report No. 84, Copenhagen, 131.
 
10.
Grabowski, D., 1999. Loess-like deposits in Harbutowice, southern Wielickie Foreland. Geological Quarterly 43(1), 39–48.
 
11.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
12.
Jackson, R.D., Huete, A.R., 1991. Interpreting vegetation indices. Preventive Veterinary Medicine 11(3-4), 185–200. https://doi.org/10.1016/S0167-....
 
13.
Janicki, G., Rejman, J., Rodzik, J., Zgłobicki, W., 2006. Metody i problemy badawcze denudacji antropogenicznej w obszarach lessowych (na przykładzie Wyżyny Lubelskiej i Roztocza). [In:] Maruszczak, H. (Ed.), Studia interdyscyplinarne nad lessami – problemy metodyczne 32, 115–126. (in Polish).
 
14.
Jaworska, H., Kobierski, M., Dąbkowska-Naskręt, H., 2008. Cation exchange capacity and the content of exchangeable cations in luvisols of various texture. Roczniki Gleboznawcze – Soil Science Annual 59(1), 84–89. (in Polish with English abstract).
 
15.
Józefaciuk, A., Józefaciuk, C., 1999. Ochrona gruntów przed erozją: poradnik dla władz administracyjnych i samorządowych oraz służb doradczych i użytkowników gruntów. Wydawnictwo IUNG, Puławy. (In Polish).
 
16.
Kabała, C., 2023. Luvisols and related clay-illuvial soils (gleby płowe) – soils of the year 2023. Current view of their origin, classification and services in Poland. Soil Science Annual 74(4), 177034. https://doi.org/10.37501/soils....
 
17.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. https://doi.org/10.2478/ssa201....
 
18.
Kabała, C., Marzec, M., 2010. Vertical and spatial diversity of particle-size distribution in Luvisols developed from loess in south-western Poland. Roczniki Gleboznawcze – Soil Science Annual 61(3), 52–64.
 
19.
Kabała, C., Musztyfaga, E., 2015. Clay-illuvial soils in the Polish and international soil classifications. Soil Science Annual 66(4), 204–213. https://doi.org/10.1515/ssa-20... (in Polish with English abstract).
 
20.
Kaczmarek, Z., Gajewski, P., Owczarek, W., Grzelak, M., 2007. Wybrane właściwości fizyczne i wodne gleb płowych wytworzonych z glin zwałowych równiny dennomorenowej (Würm). Roczniki Gleboznawcze – Soil Science Annual 58(1–2), 45–52. (in Polish with English abstract).
 
21.
Kalembasa, D., Pakuła, K., Jaremko, D., 2011. Sorption properties of soils in the Siedlce Upland. Acta Agrophysica 18(2), 311–319.
 
22.
Klimowicz, Z., Uziak, S., 2001. The influence of long-term cultivation on soil properties and patterns in an undulating terrain in Poland. Catena 43(3), 177–189. https://doi.org/10.1016/S0341-....
 
23.
Kobierski, M., 2013. Morphology, properties and mineralogical composition of eroded Luvisols in selected morainic areas of the Kujavian and Pomeranian Province. University of Technology and Life Sciences, Bydgoszcz (in Polish with English summary).
 
24.
Kondracki, J., 2009. Regional geography of Poland. Wydawnictwo Naukowe PWN, Warszawa. (in Polish).
 
25.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of Köppen-Geiger Climate Classification updated. Meteorologische Zeitschrift 15, 259–263. https://doi.org/10.1127/0941-2....
 
26.
Kowalczyk, A., Twardy, S., 2012. Comparison of the water erosion magnitude estimated by the modified USLE methods. Woda–Środowisko–Obszary Wiejskie 12, 83–92. (in Polish with English abstract).
 
27.
Krawczyk, M., Ryzner, K., Skurzyński, J., Jary, Z., 2017. Lithological indicators of loess sedimentation of SW Poland. Contemporary Trends in Geosciences 6(2), 94–111. https://doi.org/10.1515/ctg-20....
 
28.
Licznar, M., 1995. Soil erosion in Poland. Zeszyty Problemowe Postępów Nauk Rolniczych 418(1), 91–100. (In Polish with English summary).
 
29.
Loba, A., Waroszewski, J., Sykuła, M., Kabała, C., Egli, M., 2022. Meteoric ¹⁰Be, ¹³⁷Cs and ²³⁹+²⁴⁰Pu as tracers of long- and medium-term soil erosion – a review. Minerals 12(3), 359. https://doi.org/10.3390/min120....
 
30.
Loba, A., Waroszewski, J., Tikhomirov, D., Calitri, F., Christl, M., Sykuła, M., Egli, M., 2021. Tracing erosion rates in loess landscape of the Trzebnica Hills (Poland) over time using fallout and cosmogenic nuclides. Journal of Soils and Sediments 21(8), 2952–2968. https://doi.org/10.1007/s11368....
 
31.
Łacek, F., 1983. Distribution of pores and retention capacity of soils in an undulated loess area. Zeszyty Problemowe Postępów Nauk Rolniczych 272, 103–111. (in Polish with English summary).
 
32.
Majewski, M., 2020. Secular and extreme soil erosion processes in the Drawskie Lakeland. Landform Analysis 39, 1–104. https://doi.org/10.12657/landf....
 
33.
Martínez-Casasnovas, J.A., Ramos, M.C., 2009. Soil alteration due to erosion, ploughing and levelling of vineyards in north-east Spain. Soil Use and Management 25(2), 183–192. https://doi.org/10.1111/j.1475....
 
34.
Matecka, P., Świtoniak, M., 2020. Delineation, characteristic and classification of soils containing carbonates in plow horizons within young moraine areas. Roczniki Gleboznawcze – Soil Science Annual 71(1), 23–36. https://doi.org/10.37501/soils....
 
35.
Miklaszewski, S., 1930. Soils of Poland. Wydanie III. Warszawa. (in Polish).
 
36.
Mroczek, P., Rodzik, J., 2011. Genetic interpretation of micromorphological features of gully loess-soil deposits (case study: Kolonia Celejów, E Poland). Landform Analysis 17, 125–130.
 
37.
Munsell Soil Color Charts, 2000. GreagMacbeth, New Windsor.
 
38.
Musielok, Ł., 2022. Occurrence of podzolization in soils developed from flysch regolith in the Wieliczka Foothills (Outer Western Carpathians, southern Poland). Soil Science Annual 73(1), 147507. https://doi.org/10.37501/soils....
 
39.
Niemyska-Łukaszuk, J., Mazurek, R., Sołek-Podwika, K., Kowalczyk, E., 1997. Content of Cd in soils and plants on grassland of Wieliczka Foothills and Podhale. Zeszyty Problemowe Postępów Nauk Rolniczych 448b, 217–224.
 
40.
Nowocień, E., 2008. Wybrane zagadnienia erozji gleb w Polsce – ocena zagrożenia gleb erozją. Studia i Raporty IUNG-PIB 10, 9–29. (in Polish).
 
41.
Orzechowski, M., Smólczyński, S., Sowiński, P., 2004. Anthropogenic transformations of the mid-moraine depression soils in the Mazurian Lakeland. Roczniki Gleboznawcze – Soil Science Annual 55(2), 311–320. (in Polish with English summary).
 
42.
Pakuła, K., Kalembasa, D., 2013. Copper fractionation from Cambisols and Luvisols using the BCR procedure. Polish Journal of Environmental Studies 22(3), 809–817.
 
43.
Paluszek, J., 2001. Water-air properties of eroded lessives soils developed from loess. Acta Agrophysica 56, 233–245. (in Polish with English summary).
 
44.
Paluszek, J., 2004. Influence of water erosion on chemical properties of lessives soils developed from loess. Roczniki Gleboznawcze – Soil Science Annual 55(4), 103–113. (in Polish with English summary).
 
45.
Paluszek, J., 2010. Changes of soil structure of eroded Luvisol developed from loess as a result of AgroAquaGel 420 polymer addition. Prace i Studia Geograficzne 45, 345–356. (in Polish with English summary).
 
46.
Paluszek, J., 2013. Influence of agricultural suitability of Luvisols developed from moraine loams on their aggregate structure. Acta Agrophysica 20(3), 283–294. (in Polish with English summary).
 
47.
Paluszek, J., Żembrowski, W., 2008. Improvement of the soils exposed to erosion in a loessial landscape. Acta Agrophysica, Rozprawy i Monografie 4(164), 1–102. (in Polish with English Summary).
 
48.
Piotrowska, I., 1998. Application of the DR-USLE model to the study of water-induced soil erosion in the postglacial zone (the upper Parsęta Catchment, West Pomerania) Badania Fizjograficzne nad Polską Zachodnią. Seria A: Geografia Fizyczna 49, 75–88. (in Polish with English Summary).
 
49.
PSC, Polish Soil Classification (Systematyka Gleb Polski), 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa, 235 pp.
 
50.
Poręba, G.J., 2008. Zastosowanie ¹³⁷Cs do modelowania procesów erozji i akumulacji w obrębie lessowej doliny użytkowanej rolniczo. Landform Analysis 9, 369–372. (in Polish).
 
51.
Poręba, G.J., Śnieszko, Z., Moska, P., 2015. Application of OSL dating and ¹³⁷Cs measurements to reconstruct the history of water erosion: A case study of a Holocene colluvium in Świerklany, south Poland. Quaternary International 374, 189–197. https://doi.org/10.1016/j.quai....
 
52.
Poręba, G.J., Śnieszko, Z., Moska, P., Mroczek, P., Malik, I., 2019. Interpretation of soil erosion in a Polish loess area using OSL, ¹³⁷Cs, ²¹⁰Pbₑₓ, dendrochronology and micromorphology – case study: Biedrzykowice site (S Poland). Geochronometria 46(1), 57–78. https://doi.org/10.1515/geochr....
 
53.
Prochal, P., 1973. Erozja gleb w terenach podgórskich i górskich w Polsce. Zeszyty Problemowe Postępów Nauk Rolniczych 138, 59–75. (in Polish).
 
54.
Radziuk, H., Świtoniak, M., 2021. Soil erodibility factor (K) in soils under varying stages of truncation. Soil Science Annual 72(1), 1–9. https://doi.org/10.37501/soils....
 
55.
Radziuk, H., Świtoniak, M., 2022. The effect of erosional transformation of soil cover on the stability of soil aggregates within young hummocky moraine landscapes in northern Poland. Agronomy 12(11), 2595. https://doi.org/10.3390/agrono....
 
56.
Reeuwijk, L. P. van., 2002. Procedures for soil analysis. ISRIC. Wageningen.
 
57.
Rybicki, R., 2010. The differentiation of soil cover of eroded terrains on the example of Opatowka river basin. Prace i Studia Geograficzne 45, 295–305. (in Polish with English Summary).
 
58.
Ryłko, W., Paul, Z., 2013. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000. Arkusz Kalwaria Zebrzydowska (995). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa. (in Polish).
 
59.
Sinkiewicz, M., 1998. The development of anthropogenic denudation in central part of northern Poland. Nicolaus Copernicus University Press, Toruń. (in Polish with English summary).
 
60.
Skiba, S., 1995. Pokrywa glebowa. [In:] Warszyńska, J. (Ed.), Karpaty Polskie. Przyroda, człowiek i jego działalność. Uniwersytet Jagielloński, Kraków, 69–76. (in Polish).
 
61.
Skiba, S., Drewnik, M., Szmuc, R., 2002. The soil cover in Gaik-Brzezowa (Wieliczka Foothills). Prace Geograficzne 109, 21–30. (in Polish with English Summary).
 
62.
Smolska, E., 2010. Pomiary erozji gleby na poletkach i stokach eksperymentalnych. Prace i Studia Geograficzne 45, 165–180. (in Polish).
 
63.
Sowiński, P., Smólczyński, S., Orzechowski, M., Kalisz, B., Bieniek, A., 2023. Effect of Soil Agricultural Use on Particle-Size Distribution in Young Glacial Landscape Slopes. Agriculture 13, 584. https://doi.org/10.3390/agricu....
 
64.
SSSP, Soil Science Society of Poland, 2008. Classification of texture of soils and mineral materials. (in Polish).
 
65.
Szymański, W., Skiba, M., Skiba, S., 2011. Fragipan horizon degradation and bleached tongues formation in Albeluvisols of the Carpathian Foothills, Poland. Geoderma 167–168, 340–350.
 
66.
Szymański, W., Skiba, S., 2007. Genesis and significance of the fragipan horizon in the Albeluvisols of the Carpathian Foothills. Roczniki Bieszczadzkie 15, 267–284. (in Polish with English summary).
 
67.
Szymański, W., Skiba, S., Nikorych, V.A., Polchyna, S.M., 2012. Luvisols of the Carpathian Foothills and the Precarpathians in Poland and the Ukraine. Roczniki Bieszczadzkie 20, 268–280. (in Polish with English summary).
 
68.
Szymański, W., Skiba, M., Błachowski, A., 2017. Influence of redox processes on clay mineral transformation in Retisols in the Carpathian Foothills in Poland. Is a ferrolysis process present?. Journal of Soils and Sediments 17, 453–470. https://doi.org/10.1007/s11368....
 
69.
Świtoniak, M., 2011. Genesis and properties of lessive soils developed from silty clay sediments at the Gołoty site within the Chełmno Lakeland. [In:] Jankowski, M. (Ed.), Selected problems of the genesis, systematics, use and protection of soils in the Kuyavian-Pomeranian region. Polish Society of Humus Substances, Polish Soil Science Society, 49–64. (in Polish with English summary).
 
70.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, north-eastern Poland. Catena 116, 173–184. https://doi.org/10.1016/j.cate....
 
71.
Świtoniak, M., 2021. Rustification as a collateral process in clay-illuvial soils of northern Poland. Soil Science Annual 72(4), 1–12. https://doi.org/10.37501/soils....
 
72.
Świtoniak, M., 2023. Assessment of soil organic carbon stocks differentiation in humus horizons of clay-illuvial soils within young morainic landscapes, northern Poland. Soil Science Annual 74(4), 176684. https://doi.org/10.37501/soils....
 
73.
Świtoniak, M., Mroczek, P., Bednarek, R., 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – case study: Brodnica and Chełmno Lake Districts (North Poland). Catena 137, 583–595. https://doi.org/10.1016/j.cate....
 
74.
Świtoniak, M., Bednarek, R., 2014. Denudacja antropogeniczna. [In:] Świtoniak, M., Jankowski, M., Bednarek, R. (Eds.), Antropogeniczne przekształcenia pokrywy glebowej Brodnickiego Parku Krajobrazowego. Wydawnictwo Naukowe UMK, Toruń, 57–84. (in Polish).
 
75.
Tomczyk, A.M., Bednorz, E., 2022. Atlas klimatu Polski (1991–2020). Bogucki Wydawnictwo Naukowe, Poznań. (in Polish).
 
76.
Turski, M., Witkowska-Walczak, B., 2004. Fizyczne właściwości gleb płowych wytworzonych z utworów pyłowych różnej genezy. Instytut Agrofizyki Polskiej Akademii Nauk, Lublin. (in Polish with English summary).
 
77.
Turski, R., Paluszek, J., Słowińska-Jurkiewicz, A., 1987. The influence of erosion on the physical properties of soils developed from loess. Roczniki Gleboznawcze – Soil Science Annual 38(1), 101–109. (in Polish with English summary).
 
78.
Uziak, S., 1962. Classification of silty soils in the Carpathian Foothills. Annales Universitatis Mariae Curie-Skłodowska, Sectio B 17(1), 1–61. (in Polish with English summary).
 
79.
Van Oost, K., Van Muysen, W., Govers, G., Heckrath, G., Quine, T.A., Poesen, J., 2003. Simulation of the redistribution of soil by tillage on complex topographies. European Journal of Soil Science 54, 63–76. https://doi.org/10.1046/j.1365....
 
80.
Wadowice County Council, Rada Powiatu w Wadowicach, 2015. Program ochrony środowiska dla Powiatu Wadowickiego na lata 2016–2019 z perspektywą na lata 2020–2023. (in Polish).
 
81.
Wężyk, P., Drzewiecki, W., Wójtowicz-Nowakowska, A., Pierzchalski, M., Mlost, J., Szafrańska, B., 2012. Mapa zagrożenia erozyjnego gruntów rolnych w Małopolsce na podstawie klasyfikacji OBIA obrazów teledetekcyjnych oraz analiz przestrzennych GIS. Archiwum Fotogrametrii, Kartografii i Teledetekcji 24, 305–314. (in Polish).
 
82.
Yang, M.Y., Tian, J.L., Liu, P.L., 2006. Investigating the spatial distribution of soil erosion and deposition in a small catchment on the Loess Plateau of China, using ¹³⁷Cs. Soil and Tillage Research 87, 186–193. https://doi.org/10.1016/j.stil....
 
83.
Zaleski, T., 2012. The role of pedogenesis in shapingthe hydrophysical properties, water retention,water regime and water balance of soilsderived from silty deposits of the Carpathians. Wydawnictwo Uniwersytetu Rolniczego, Kraków. (in Polish with English summary).
 
84.
Zasoński, S., 1974. Micromorphological and chemical studies on the process of lessivage in fine sand soils. Part I. Loess soils of the Krakow Plateau. Roczniki Gleboznawcze – Soil Science Annual 25(3), 55–83. (in Polish with English summary).
 
85.
Zasoński, S., 1975. Micromorphological and chemical studies on the lessivage process in fine sand soils. Part II. Soils formed on loess-like rocks in the Nowy Targ intermontane depression. Roczniki Gleboznawcze – Soil Science Annual 26(1), 27–47. (in Polish with English summary).
 
86.
Zasoński, S., 1979. Micromorphological properties of some very fine sand deluvial soils of the Wiśnicz Foothills. Roczniki Gleboznawcze – Soil Science Annual 30(2), 163–184. (in Polish with English summary).
 
87.
Zasoński, S., 1980. The part played by lessivage in the formation of micromorphological features of very fine sand material. Roczniki Gleboznawcze – Soil Science Annual 31(2), 3–14.
 
88.
Zasoński, S., 1993. Micromorphological properties of some very fine sand deluvial soils of the Wiśnicz Foothills. Zeszyty Naukowe Akademii Rolniczej w Krakowie, Seria Rolnictwo 31, 3–17. (in Polish with English summary).
 
89.
Zasoński, S., 1981. Main soil-forming factors in the fine-sand formations of the Wieliczka Foothills. Part I. General characteristics of soils and some chemical properties. Roczniki Gleboznawcze – Soil Science Annual 32(2), 3–26. 113–141. (in Polish with English summary).
 
90.
Zasoński, S., 1983. Main soil-forming factors in the fine-sand formations of the Wieliczka Foothills. Part II. Micromorphological properties. Roczniki Gleboznawcze – Soil Science Annual 34(4), 123–158. (in Polish with English summary).
 
91.
Zasoński, S., 1989. The influence of the surface relief on the morphology of fine-sand soils of the Wieliczka Foothills. Roczniki Gleboznawcze – Soil Science Annual 40(2). (in Polish with English summary).
 
92.
Žížala, D., Juřicová, A., Zádorová, T., Zelenková, K., Minařík, R., 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing 52(S1), 108–122. https://doi.org/10.1080/227972....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top