PRACA ORYGINALNA
Wybrane właściwości chemiczne gleby piaszczystej po 36 latach zróżnicowanego nawożenia azotem mineralnym i obornikiem bez wapnowania w dwóch płodozmianach
 
Więcej
Ukryj
1
Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Polska
AUTOR DO KORESPONDENCJI
Dorota Pikuła   

Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Czartoryskich 8, 24-100, Puławy, Polska
Data nadesłania: 10-07-2020
Data ostatniej rewizji: 01-10-2020
Data akceptacji: 21-10-2020
Data publikacji online: 23-11-2020
Data publikacji: 23-11-2020
 
Soil Sci. Ann., 2020, 71(3), 246–251
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE ARTYKUŁU
Streszczenie: W artykule przedstawiono wyniki wpływu wieloletniego zróżnicowanego płodozmianu, nawożenia obornikiem i azotem mineralnym na zawartość węgla organicznego w glebie, azotu całkowitego, przyswajalnego fosforu i potasu oraz pH. Wieloletnie doświadczanie polowe prowadzone jest nieprzerwalnie od 1979 r. Trzyczynnikowe doświadczenie jest zlokalizowane na glebie Albic Luvisol (WRB, 2015) o uziarnieniu piasku gliniastego lekkiego, w którym rośliny uprawiane są w dwóch 4-letnich zmianowaniach: RotA (kukurydza na ziarno, pszenica ozima, jęczmień jary i kukurydza na kiszonkę) oraz RotB (kukurydza na ziarno, pszenica ozima, gorczyca na poplon, jęczmień jary i mieszanka koniczyny z trawami). Po 36 latach gleba w RotB ze zwiększonym dopływem do gleby materii organicznej (gorczyca na przyoranie i mieszanka koniczyny z trawami) zgromadziła znacznie większe ilości węgla organicznego. Jednak przy braku wapnowania gleba w RotB, w przeciwieństwie do tej w RotA, stała się bardziej kwaśna, charakteryzowała się zmniejszoną zawartością przyswajalnego fosforu i potasu. Wyniki tego wieloletniego eksperymentu nawozowego wskazują, że samo zastosowanie nawożenia obornikiem nie jest wystarczające do zwiększenia/utrzymania zawartości węgla organicznego w glebie na optymalnym poziomie w warunkach konwencjonalnej uprawy roślin, bez przyorywania słomy i poplonów. Zastosowanie dopiero nawożenia obornikiem w połączeniu z właściwie skonstruowanym zmianowaniem i nawożeniem azotem mineralnym zwiększa zawartość węgla organicznego w glebie i azotu w glebie, ale nie zwiększa zawartości przyzwalanych form fosforu i potasu, nie niweluje też zakwaszenia gleby. Nawożenie azotem mineralnym zapobiega systematycznemu obniżaniu się poziomu węgla organicznego w glebie.
 
REFERENCJE (35)
1.
Antil, R.S., Bar-Tal, A., Fine P., Hada A., 2011. Predicting nitrogen and carbon mineralization of composted manure and sewage sludge in soil. Compost Science and Utilization 19,3. https://doi.org/10.1080/106565....
 
2.
Bieńkowski, J., Janowiak, J, 2006. The state of humus in the soil in long-term static fertilization experiments. Fragmenta Agronomica 2, 16–225. (in Polish with English abstract).
 
3.
Butterly, C. R., Baldock, J. A. & Tang, C., 2013. The contribution of crop residues to changes in soil pH under field conditions. Plant and Soil 366, 185–198. https://doi.org/10.1007/s11104....
 
4.
Cwojdziński, W., Majcherczak, E., 1996. The Effect of 20-Year Mineral and Organic Fertilization on Yield of Plants and Some Properties of Soil. Zeszyty Naukowe Akademii Rolniczej Szczecin – Scientific Journals of the Agricultural University of Szczecin 172, Rolnictwo–Agriculture 62, 77–84. (in Polish with English abstract).
 
5.
Directive 91/676/EEC of the European Parliament and of the Council of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources, (Dz.U. UE L 31 December 1991).
 
6.
Gonet, S.S., 1993. The state of humus in the soil in long–term static fertilization experiments. Zeszyty Naukowe Akademii Rolniczej Kraków – Scientific Journals of the Agricultural University of Krakow 277, 37, 39–49. (in Polish with English abstract).
 
7.
Hofmann, J., 2001. Assessment the long-term effect of organic and mineral fertilization on soil fertility. 12th WFC Fertilization in the third millennium. Beijing.
 
8.
Jenkinson, D.,S., 1990. The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society B, 329: 361–368.
 
9.
Kaniuczak, J,. 1999. Content of some magnesium forms in grey-brown-podsolic soil depending on liming and mineral fertilization. Zeszyty Problemowe Postępów Nauk Rolniczych– Advances of Agricultural Sciences Problem Issues 467: 307-316. (in Polish with English abstract).
 
10.
Kęsik, T., 2008. Cropping pattern and its influence on agricultural ecosystem. Zeszyty Problemowe Postępów Nauk Rolniczych– Advances of Agricultural Sciences Problem Issues 527, 39–50. (in Polish with English abstract).
 
11.
Koper, J., Lemanowicz, J., 2008. Effect of varied mineral nitrogen fertilization on changes in the content of phosphorus in soil and in plant and the activity of soil phosphatases. Chemia i Inżynieria Ekologiczna–Ecological Chemistry and Engineering 15(5), 465–47. (in Polish with English abstract).
 
12.
Körschens, M, Pfefferkorn, A., 1998. Der Statische Düngungsversuch Bad Lauchstädt undandere Feldversuche [The static fertilization experiment and other long-term field experiments]. UFZ-Umweltforschungszentrum Leipzig–Halle GmbH. 56.
 
13.
Körschens, M., Albert, E., Armbruster, M., Barkusky, D., et al., 2013. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long–term field experiments of the twenty–first century. Journal Archives of Agronomy and Soil Science Vol. 59, 8. https://doi.org/10.1080/036503....
 
14.
Krzywy, E., Krupa J., Wołoszyk, Cz., 1996. Impact of long-term organic and mineral fertilization on some soil fertility indicators. Zeszyty Naukowe Akademii Rolniczej Szczecin –Scientific Journals of the Agricultural University of Szczecin 172, Rolnictwo–Agriculture 62, 259–264. (in Polish with English abstract).
 
15.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
 
16.
Łabza, T., Puła. J., 1996. Total nitrogen content in soil under conditions of crop rotation transport. Zeszyty Naukowe Akademii Rolniczej Szczecin–Scientific Journals of the Agricultural University of Szczecin 172, Rolnictwo–Agriculture 62, 303–310. (in Polish with English abstract).
 
17.
MacRae, R., J, Mehuys, G., R., 1985. The effect of green manuring on the physical properties of temperate–area soil. Advances in Soil Science 3, 71–94.
 
18.
Maćkowiak, Cz., 2000. The effect of plant selection in the crop rotation, manure and mineral fertilizers on the organic carbon content in the soil and the productivity of the rotations. Nawozy i Nawożenie–Fertilizers and Fertilization 4(5), II, 91–102. (in Polish with English abstract)
 
19.
Martyniuk, S., Pikuła, D., Kozieł, M., 2019. Soil properties and productivity in two long-term crop rotations differing with respect to organic matter management on an Albic Luvisol. Scientific Reports. https://doi.org/10.1038/s41598...
 
20.
Mercik, S., Stępień, W., Figat E., 1995. The carbon and nitrogen dynamic process in the soil and the fate of N applied to soil with mineral and organic fertilizers in the long-term static experiments. Zeszyty Problemowe Postępów Nauk Rolniczych–Advances of Agricultural Sciences Problem Issues, 421a, 277–284. (in Polish with English abstract).
 
21.
Mercik, S., Stępień, W., Lenart, S. 2000. Soil fertility in three fertilization languages: mineral, organic and organic–mineral–in long-term experiment. Part I.24. Physical and physicochemical properties of soils. Folia Pomeranae Universitatis Technologiae Stetinensis, 11, Agriculture 84, 311-316. (in Polish with English abstract).
 
22.
Mercik, S., Stepień, M., Stępień, W., Sosulski, T., 2005. Dynamics of organic carbon content in soil depending on long–term fertilization and crop rotation. Roczniki Gleboznawcze – Soil Science Annual 54(3/4), 53–60. (in Polish with English abstract).
 
23.
Ochal, P. Kopiński, J., 2017. The effect of soil acidification on the environment and plant production. Studia i Raporty IUNG-PIB–Studies and Reports of IUNG-PIB, Fertilization and the Environment 53(7), 9–25.
 
24.
Pikuła, D., Berge, Ten H.F.M.; Goedhart, P.W.; Schröder, J.J., 2016. Apparent nitrogen fertilizer replacement value of grass–clover leys and of farmyard manure in an arable rotation. Part II: farmyard manure. Soil Use and Management, 32 S1. ISSN 0266-0032, 20–31. https://doi.org/10.1111/sum.12...
 
25.
Schroder, J. L. et al., 2011. Soil acidification from long–term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal 75, 956–961. https://doi.org/10.2136/sssaj2....
 
26.
Scottti, R., Bonanomi, G., Sceleza, A., Zoina, A. & Rao, M., A., 2015. Organic amendments as sustainable tool to recovery fertility in intensive agriculture systems. Journal of Soil Science and Plant Nutrition 15(2), 333–352. http://dx.doi.org/10.4067/S071....
 
27.
Sienkiewicz, S., Krzebietke, S., Wierzbowska, J., Czapla, J., 2004. Changes of chemical properties of soil in relation to fertilization system. Annales Universitatis Mariae Curie–Skłodowska, sectio G (Ius), E, 59/1:415–422. (in Polish with English abstract).
 
28.
Sienkiewicz, S., Krzebietke, S., Omilian, M., Wojanowska, T., Żarczyśki, P., 2009. Effect of long-term differentiated fertilization with farmyard manure and mineral fertilizers on the content of available forms of P, K and Mg in soil. Journal of Elementology, 14(4): 779–786. DOI: 10.5601/jelem.14.4.779-786. (in Polish with English abstract).
 
29.
Stefanescu, M., 2002. Researches regarding the influence of manure in wheat –maize rotation. In: Biologie si Biodiversitate, Timisoara:243. https://doi.org/10.4172/2329- 8863.1000269.
 
30.
Stępień, W., Mercik, S., 1999. Changes of the phosphorus and potassium contents in soil and crop yielding along 30–years, on the soil fertilized and not fertilized with these nutrients. Zeszyty Problemowe Postępów Nauk Rolniczych – Advances of Agricultural Sciences Problem Issues, 467, 269–278. (in Polish with English abstract).
 
31.
Sulewska, A., Ratajczak, K., Niewiadomska, A., 2017. Changes in selected chemical properties of soil under maize grown in monoculture for silage as a result of application of aftercrop, straw or natural fertilizers. Journal of Research and Applications in Agricultural Engineering, 62(4), 156–161. (in Polish with English abstract).
 
32.
Szymańska, M., Łabętowicz, J., Korc, M., 2005. Assessment of fertilizing factors in shaping the form of phosphorus in the soil under the conditions of permanent fertilization experiment. Part I. Available phosphorus. Fragmenta Agronomica, 22(1), 310–318. (in Polish with English abstract).
 
33.
Ten Berge, H.F.M., Pikuła, D., Goedhart, P.W., Schröder J.J., 2016. Apparent nitrogen fertilizer replacement value of grass–clover leys and of farmyard manure in an arable rotation. Part I: grass–clover leys. Soil Use and Management 32 S1. ISSN 0266-0032, 9–19. https://doi.org/10.1111/sum.12....
 
34.
Trawczyński, C., 2015. Balance of nitrogen, phosphorus and potassium in the second cycle of crop rotation in organic production system on the sandy soil. Fragmenta Agronomica 32 (2), 87–96. (in Polish with English abstract)
 
35.
Wiśniewski, W., Gonet, S.S., 1986. The effect of fertilization with mineral nitrogen and manure on the fractional composition of organic soil matter, The state of humus in the soil in long-term static fertilization experiments. Pamiętnik Puławski– Puławski's Diary 87, 19–29.
 
eISSN:2300-4975
ISSN:2300-4967