PRACA ORYGINALNA
Nowe liczby graniczne niedoboru mikroelementów w glebie oznaczanych przy użyciu 1 M HCl dla pszenicy i rzepaku
 
Więcej
Ukryj
1
Zakład Herbologii i Technik Uprawy Roli we Wrocławiu, Instytut Uprawy Nawożenia i Gleboznawstwa - ‎Państwowy Instytut Badawczy, Polska
2
Krajowa Stacja Chemiczno-Rolnicza w Warszawie, Polska
AUTOR DO KORESPONDENCJI
Jolanta Korzeniowska   

Zakład Herbologii i Technik Uprawy Roli we Wrocławiu, Instytut Uprawy Nawożenia i Gleboznawstwa - ‎Państwowy Instytut Badawczy, Orzechowa 61, 50-540, Wreoclaw, Polska
Data nadesłania: 01-05-2020
Data akceptacji: 05-08-2020
Data publikacji online: 09-09-2020
Data publikacji: 09-09-2020
 
Soil Sci. Ann., 2020, 71(3), 205–214
 
SŁOWA KLUCZOWE
STRESZCZENIE ARTYKUŁU
Celem pracy była nowelizacja liczb granicznych do oceny zawartości B, Cu, Fe, Mn i Zn w glebie oznaczanych przy użyciu 1 M HCl. W odróżnieniu od liczb dotychczas stosowanych, określających zawartość niską, średnią i wysoką, nowe liczby wskazują tylko granicę zawartości niskiej, poniżej której konieczne jest nawożenie danym mikroelementem. Ponadto nowe liczby są zróżnicowane w zależności od gatunku rośliny, co jest związane z różną wrażliwością roślin na deficyt mikroelementów. Liczby te opracowano dla pszenicy i rzepaku na podstawie dużego zbioru danych uzyskanych z kolekcji 3865 par próbek gleba-roślina, pobranych z pól produkcyjnych zlokalizowanych w 16 województwach kraju. W próbkach roślinnych oznaczono zawartość mikroelementów, a w próbkach glebowych oprócz mikroelementów również pH, skład granulometryczny oraz zawartość węgla organicznego i przyswajalnego fosforu. Dodatkowo dla wszystkich pól oszacowano plon ziarna pszenicy i nasion rzepaku. Zastosowano dwie niezależne metody obliczeń w celu zwiększenia wiarygodności opracowanych liczb. Jedną z nich była metoda równań regresji, wykorzystująca współczynnik bioakumulacji mikroelementu, jego zawartość krytyczną w roślinie oraz odpowiednie cechy gleby. Równania regresji konstruowano przy pomocy programu Stagraphics. Dla każdego mikroelementu testowano 8 modeli w poszukiwaniu równania o najwyższym współczynniku determinacji r2. Do weryfikacji tak wyliczonych liczb użyto metody „wysokich plonów”, która polegała na wyznaczeniu najmniejszej zawartości mikroelementu w glebie, przy której można osiągnąć wysoki plon.
 
REFERENCJE (29)
1.
Antonkiewicz J., Kołodziej B., Bielińska E.J., Gleń-Karolczyk K. 2019. Research on the uptake and use of trace elements from municipal sewage sludge by multiflora rose and Virginia fanpetals. Journal of Elementology, 24, 3, 987-1005. https://doi.org/10.5601/jelem.....
 
2.
Bravin, M.N., Garnier, C., Lenoble, V., Gérard, F., Dudal, Y., Hinsinger, P., 2012. Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochimica et Cosmochimica Acta 84, 256-268. https://doi.org/10.1016/j.gca.....
 
3.
Cekstere, G., Osvalde, A., 2013. A study of chemical characteristics of soil in relation to street trees status in Riga (Latvia). Urban Forestry and Urban Greening 12(1), 69-78. https://doi.org/10.1016/j.ufug....
 
4.
Cakmak, I., Yilmaz, A., Kalayci, M., Ekiz, H., Torun, B., Erenoglu, B., Braun, H.J., 1996. Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil 180, 165–172.
 
5.
Fertilizer recommendations. Part I. Limit values for macro and microelements assessment in the soils/Zalecenia nawozowe. Cz. I. Liczby graniczne do wyceny w glebach makro- i mikroelementów. IUNG Puławy 1990.
 
6.
Gediga, K., Spiak, Z., Piszcz, U., Bielecki, K., 2015. Suitability of different soil extractants for determination of available Cu and Mn contents in Polish soils. Communications in Soil Science and Plant Analysis 46, 81-93. https://doi.org/10.1080/001036....
 
7.
Gembarzewski, H., Korzeniowska, J., 1990. Simultaneous extraction of B, Cu, Fe, Mn, Mo and Zn from mineral soils, and an estimation of the results. Agribiological Research-Zeitschrift fur Agrarbiologie Agrikulturchemie Okologie 43(2), 115-127.
 
8.
Gembarzewski, H., Korzeniowska, J., 1996. Selection of method of micronutrients extraction from soil and elaboration of threshold values by use of multiple regression equations/Wybór metody ekstrakcji mikroelementów z gleby i opracowanie liczb granicznych przy użyciu regresji wielokrotnej. Zeszyty Problemowe Postępów Nauk Rolniczych 434, 353-364.
 
9.
Imtiaz, M., Rashid, A., Khan, P., Memon, M.Y., Aslam, M., 2010. The role of micronutrients in crop production and human health. Pakistan Journal of Botany 42(4), 2565-78.
 
10.
Inaba, S., Takenaka, C., 2005. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts. Environment International 31(4), 603-608. https://doi.org/10.1016/j.envi....
 
11.
Kabata-Pendias, A., Mukherjee, A.B., 2007. Trace elements from soil to human. Springer Science & Business Media.
 
12.
Kabata-Pendias, A., Pendias, H., 1999. Biogeochemistry of trace elements/Biogeochemia pierwiastków śladowych. PWN Warszawa.
 
13.
Kantek, K., Korzeniowska, J., 2013. The usefulness of Mehlich 3 and 1 M HCl extractant to assess copper deficiency in soil for environmental monitoring purpose/Przydatność ekstrahentów Mehlich 3 i 1 M HCl do oceny niedoborów miedzi w glebie pod kątem monitoringu środowiska. Ochrona Środowiska i Zasobów Naturalnych 24(3), 1-5. https://doi.org/10.2478/oszn-2....
 
14.
Karamanos, R.E., Goh, T.B., Harapiak, J.T., 2003. Determining wheat response to copper in prairie soils. Canadian Journal of Soil Science 83(2), 213-221.
 
15.
Katyal, J.C., Randhawa, N.S., 1983. Micronutrient. FAO Fertilizer and Plant Nutrition Bulletin.
 
16.
Kęsik, K., Jadczyszyn, T., Lipiński, W., Jurga, B., 2015. Adaptation of the Mehlich 3 procedure for routine determination of phosphorus, potassium and magnesium in soil/Adaptacja testu Mehlicha 3 do rutynowych oznaczeń zawartości fosforu, potasu i magnezu w glebie. Przemysł Chemiczny 94(6), 973-976. https://doi.org/10.15199/62.20....
 
17.
Korzeniowska, J., Stanislawska-Glubiak, E., 2013. A comparison of the suitability of several methods to estimate the bioavailability of elements in soils to plants. Fresenius Environmental Bulletin 22(4), 943-948.
 
18.
Korzeniowska, J., Stanisławska-Glubiak, E., 2015. Comparison of 1 M HCl and Mehlich 3 for assessment of the micronutrient status of polish soils in the context of winter wheat nutritional demands. Communications in Soil Science and Plant Analysis 46(10), 1263-1277. https://doi.org/10.1080/001036....
 
19.
Korzeniowska, J., Stanisławska-Glubiak, E., Lipiński, W., 2016. Comparison of the extraction results of micronutrients from the soil by the 1 M HCl and Mehlich 3/ Porównanie wyników ekstrakcji mikroelementów z gleby roztworem 1 M HCl i Mehlich 3. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu: Rolnictwo 619, 59-68.
 
20.
Korzeniowska, J., Stanisławska-Glubiak, E., Lipiński, W., 2019. Development of the limit values of micronutrient deficiency in soil determined using Mehlich 3 extractant for Polish soil conditions. Part I. Wheat /Opracowanie liczb granicznych niedoboru mikroelementów w glebie oznaczanych przy użyciu ekstrahenta Mehlich 3 dla polskich warunków glebowych. Część I. Pszenica. Soil Science Annual 70(4), 314–323. https://doi.org/10.2478/ssa-20....
 
21.
Krishnasamyl, R., Jaisankarl, J., Suresh, M., 1997. Characterization of boron adsorption in soils of Tamil Nadu (S. India). [In]: Bell, R.W., Rerkasem, B (Eds.). Boron in Soils and Plants, 255-259.
 
22.
Loide, V., Nõges, M., Rebane, J., 2005. Assessment of the agrochemical properties of the soil using the extraction solution Mehlich 3 in Estonia. Agronomy Research 3(1), 73–80.
 
23.
McLaughlin, M.J., Zarcinas, B.A., Stevens, D.P., Cook N., 2000. Soil testing for heavy metals. Communications in Soil Science and Plant Analysis 3, 11661–1700. https://doi.org/10.1080/001036....
 
24.
Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15(12), 1409–1416.
 
25.
Menzies, N.W., Donn, M.J., Kopittke, P.M., 2007. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution 145(1), 121-130. https://doi.org/10.1016/j.envp....
 
26.
Stanisławska-Glubiak, E., Korzeniowska, J., Lipiński, W., 2019. Development of the limit values of micronutrient deficiency in soil determined using Mehlich 3 extractant for Polish soil conditions. Part II. Rapeseed /Opracowanie liczb granicznych niedoboru mikroelementów w glebie oznaczanych przy użyciu ekstrahenta Mehlich 3 dla polskich warunków glebowych. Część II. Rzepak. Soil Science Annual 70(4), 324-330. https://doi.org/10.2478/ssa-20....
 
27.
Wang, X., Chen, X., Liu, S., Ge, X., 2010. Effect of molecular weight of dissolved organic matter on toxicity and bioavailability of copper to lettuce. Journal of Environmental Sciences 22(12), 1960-1965. https://doi.org/10.1016/S1001-....
 
28.
Wu, C., Luo, Y., Zhang, L., 2010. Variability of copper availability in paddy fields in relation to selected soil properties in southeast China. Geoderma 156(3-4), 200-206. https://doi.org/10.1016/j.geod....
 
29.
Zerrari, N., Moustaoui, D., Verloo, M., 1999. The various forms of soil boron: Importance, effect of soil characteristics and plant availability. Agrochimica 43(2), 77-88.
 
eISSN:2300-4975
ISSN:2300-4967