Characterization of the “Waru Waru” soils on the Peruvian high plateau
Facultad de Ciencias Agrarias. Escuela Profesional de Ingeniería Agronómica, 1Universidad Nacional del Altiplano – Puno, Peru
Facultad de Minas. Departamento de Geociencias y Medioambiente, 2Universidad Nacional de Colombia – Sede Medellín, Colombia
Departament de Geografía Física, Laboratori d'Anàlisi i Gestió del Paisatge, Universitat de Girona, Spain
Departamento de Florística, 4Universidad Nacional Mayor de San Marcos, Peru
Data nadesłania: 28-07-2023
Data ostatniej rewizji: 07-02-2024
Data akceptacji: 20-02-2024
Data publikacji online: 20-02-2024
Data publikacji: 20-02-2024
Autor do korespondencji
Sandro Sardon Nina   

Facultad de Ciencias Agrarias. Escuela Profesional de Ingeniería Agronómica, 1Universidad Nacional del Altiplano – Puno, Peru
Soil Sci. Ann., 2024, 75(1)184338
The Puno-Peruvian high plateau have been shaped by humans over the last 8000 years. The Waru Waru system is a direct result of the agricultural activities of the pre-Inca in the last 2000 years. The present study was conducted in the circumlacustrine zone of Titicaca (445,532 ha) near the city of Puno, Peru. The parent material of the soils originates from the Quaternary alluvial and lacustrine deposits within the high plateau with flat landscapes, and the land is used for temporary and perennial cultivation as well as extensive natural pasture. The entire region was assessed through a preliminary soil survey, based on which three soil profiles were selected as representative Waru Waru soil structures. The soil samples were subjected to morphological and physicochemical analyses and the genesis in relation to historical use was investigated. The results showed that sandy loam and clay loam textures dominate and the average sand content is 52%, giving the parent material acidic characteristics. The soils are typically covered by natural grassland, with adequate drainage conditions and the presence of a hydrological discontinuity at a depth of 60 cm. The stagnic properties of the soils are related to the seasonally wet and paleohydromorphic conditions originating from paleolacustrine conditions and flooding. The soils exhibited high variability in base content, with pH ranging from acidic to neutral and evidence of ion leaching processes and incipient concentration of salts at depth. The predominant soils were Stagnosols, Cambisols and Phaeozems in the same order (IUSS Working Group WRB, 2022), corresponding to Inceptisols and Mollisols (Soil Survey Staff, 2022a). The Waru Waru agricultural system covers an area of approximately 123,000 ha, with 5% of this area consisting of natural grasslands. The degradation of the traditional agriculture system (Waru Waru) is influenced by the socio-cultural dynamics and modernization of the agricultural sector.
Beltrán, D.F., Palomino, R.P., Moreno, E.G., Peralta, C. G, Montesinos, D.B., 2015. Calidad de agua de la bahía interior de Puno, lago Titicaca durante el verano del 2011. Revista Peruana de Biología 22(3), 335–340.
Boixadera, J., Esteban, I., Albert, R.M., Poch, R.M., 2019. Anthropogenic soils from Llanos de Moxos (Bolivia): Soils from pre-Columbian raised fields. Catena 172, 21–39.
Bouyoucos, G.J., 1962. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal 54(5), 464–465.
Caillavet, C., 2008. A Native American System of Wetland Agriculture in Different Ecosystems in the Ecuadorian Andes (15th-18th Centuries). Environment and History 14, 331–353.
Díaz Aguilar, R.D., 2013. Estudio de caracterización climática de la precipitación pluvial y temperatura del aire para las cuencas de los ríos Coata e Ilave. Dirección regional SENAMHI-puno, Dirección General de Meteorología. Puno – Perú. 45p.
Earls, J., Erickson, C.L, Ochoa, J.F, Flores, P.P., 1986. Andenes у Camellones en el Perú Andino. CONCYTEC. Ed Bellido. Lima, Perú. 379 p.
Erickson, C.L., 1988. Raised Field Agriculture in the Lake Titicaca Basin: Putting Ancient Agriculture Back to Work. Expedition 30(1), 8–16.
Erickson, C.L., 2000. The Lake Titicaca Basin: A Pre-Columbian built landscape. In: D. Lentz (Ed.), Imperfect balance: Landscape transformations in the Precolumbian Americas (pp. 311-356). New York: Columbia University Press.
Erickson, C., 2006. El valor actual de los Camellones de cultivo precolombinos: Experiencias del Perú y Bolivia. In F. Valdez (Ed.), Agricultura ancestral. Camellones y albarradas: Contexto social, usos y retos del pasado y del presente (pp. 315-339). Quito: Ediciones Abya-Yala.
FAO, 2006. Guidelines for Soil Description, a Framework for International Classification, Correlation and Communication. 4th Edition, FAO, Rome.
FAO, 2021. Standard operating procedure for soil available phosphorus - Olsen method. Rome.
FAO, 2023. Standard operating procedure for soil bulk density, cylinder method. Rome.
GIAHS, 2017. Global important agricultural heritage systems. Food and Agriculture Organization of the United Nations – FAO. Rome, Italy.
Gondard, P., 2006. Campos elevados en llanuras húmedas del modelado al paisaje camellones, Waru Warus o pijales. Agricultura Ancestral. Camellones y Albarradas. Contexto Social, Usos y Retos del Pasado y del Presente. Ediciones Abya-Yala, Quito, Ecuador, 25–53.
Gondard, P., 2008. Les camellones sud-américains. In : Agricultures singulières. Mollard, É., Walter, A. Editors. IRD Éditions Institut de recherche pour le développement. Paris. 75–80.
Herrera, L.F., Sarmiento, G., Romero, F., Botero, P.J., Berrio, J.C., 2001. Evolución ambiental de la Depresión Momposina (Colombia) desde el Pleistoceno Tardío a los Paisajes actuales. Geología Colombiana 26, 95–121.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
Martínez-Ruiz, J.L., 2014. The Chinampa: a sustainable highly efficient agrohydrologic system for shallow lacustrine and wetland areas. Water Practice & Technology 9(3).
Merdy, P., Gamrani, M., Montes, C.R., Rezende Filho, A.T., Barbiero, L., Ishida, D.A., Silva, A.R.C., Melfi, A.J., Lucas, Y., 2022. Processes and rates of formation defined by modelling in alkaline to acidic soil systems in Brazilian Pantanal wetland. Catena 210, 105876.
Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon and organic matter. p. 539-579. In: A. L. Page et al. (ed.) Methods of soil analysis: Part 2. Chemical and microbiological properties. ASA Monograph Number 9.
OEA, 1996. Diagnostico Ambiental del Sistema Titicaca-Desaguadero-Poopo-Salar de Coipasa (Sistema TDPS) Bolivia-Perú. UNEP - División de Aguas Continentales Programa de al Naciones unidas para el medio ambiente. Gobierno de Bolivia, Gobierno del Peru. Washington, D.C.
Pérez-Pérez, J., McClung de Tapia, E., Barba-Pingarrón, L., Gama-Castro, J., Peralta-Higuera, A., 2012. Remote sensing detection of potential sites in a prehispanic domestic agricultural terrace system in cerro San Lucas, Teotihuacan, Mexico. Boletín de la Sociedad Geológica Mexicana 64(1), 109–118.
Pérez Sánchez, J.M., 2007. El manejo de los recursos naturales bajo el modelo agrícola de camellones chontales en Tabasco. IBEROFORUM. Revista de Ciencias Sociales de la Universidad Iberoamericana, II (4), 1–9.
PIWA, 1992. Avances de Investigación sobre Microclimatología en el agroecosistema de Waru Waru. WARU–PIWA. Convenio: PELT/INADE-IC/COTESU, Puno–Perú.
PIWA, 1994. Priorización de las áreas potenciales para la (re) construcción de Waru Waru en el Altiplano de Puno. WARU–PIWA. Convenio: PELT/INADE-IC/COTESU, Puno–Perú.
Remini, B., Achour, B., 2014. The Foggara: A traditional system of irrigation in arid regions. GeoScience Engineering Journal 60(2), 32–39.
Robles, B., Flores, J., Martínez, J.L., Herrera, P., 2019. The Chinampa: An Ancient Mexican Sub-Irrigation System. Irrigation and Drainage 68. 115–122.
Rodrigues, L., Lombardo, U., Veit, H., 2018. Design of pre-Columbian raised fields in the Llanos de Moxos, Bolivian Amazon: Differential adaptations to the local environment. Journal of Archaeological Science: Reports 17.
Rodriguez, R., Sánchez, E., Choquehuanca, S., Fabián, C., Del Castillo, B., 2020. Geología de los cuadrángulos de Puno (hojas 32v1, 32v2, 32v3, 32v4) y Acora (hojas 32x1, 32x2, 32x3 y 32x4). INGEMMET, Boletín, Serie L: Actualización Carta Geológica Nacional (Escala 1: 50 000), 2, 109 p., 8 mapas.
Rojas-Mora, S., Montejo-Gaitán, F., 2021. The pre-Hispanic Raised Fields System of the Mompós Depression in the Colombian Caribbean Region. A Preliminary Archaeological Report. In: Bonomo, M., Archila, S. (eds) South American Contributions to World Archaeology. One World Archaeology. Springer, Cham.
SENAMHI, 2021. Climas del Perú – Mapa de Clasificación Climática Nacional. Servicio Nacional de Meteorología e Hidrología del Perú. Ministerio de Medioambiente. 70p.
Smith, C.T., Denevan, W.M., Hamilton, P., 1968. Ancient ridged fields in the region of Lake Titicaca. The Geographical Journal 134, 353–367.
Soil Science Division Staff, 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C. Soil Science Division Staff (SSS).
Soil Survey Staff, 2022a. Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.
Soil Survey Staff, 2022b. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 6.0. U.S. Department of Agriculture, Natural Resources Conservation Service.
USDA, 2001. Soil Quality Test Kit Guide. United States Department of Agriculture, Agricultural Research Service, Natural Resources Conservation Service, Soil Quality Institute. 88p.
U.S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook No. 60. U.S. Government Printing Office.
Journals System - logo
Scroll to top