PRACA ORYGINALNA
Właściwości chemiczne gleby po ponad 55 latach zróżnicowanego nawożenia i zmianowania roślin
Więcej
Ukryj
1
Department of Agronomy, Institute of Agriculture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
2
Department of Biometry, Institute of Agriculture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
Data nadesłania: 11-06-2025
Data ostatniej rewizji: 11-09-2025
Data akceptacji: 01-11-2025
Data publikacji online: 01-11-2025
Data publikacji: 01-11-2025
Autor do korespondencji
Irena Suwara
Instytut Rolnictwa. Katedra Agronomii, Warsaw University of Life Sciences – SGGW, Warsaw, Poland, Polska
Soil Sci. Ann., 2025, 76(3)213837
SŁOWA KLUCZOWE
STRESZCZENIE
W pracy przedstawiono wyniki badań właściwości chemicznych gleb, takich jak pH gleby oraz zawartość azotu ogólnego (Nt), przyswajalnych form fosforu (P) i potasu (K) oraz mikroelementów (manganu (Mn), miedzi (Cu), cynku (Zn) i żelaza (Fe)) uzyskanych po ponad 55 latach stosowania nawożenia wyłącznie mineralnego (NPK), organicznego (OB) i obornikiem łącznie z nawozami mineralnymi (½ NPK + ½ OB) w dwóch zmianowaniach: zmianowaniu bez koniczyny czerwonej (burak cukrowy - jęczmień jary - rzepak ozimy - pszenica ozima) oraz zmianowaniu norfolskim z koniczyną czerwoną (burak cukrowy - jęczmień jary z wsiewką koniczyny czerwonej - koniczyna czerwona - pszenica ozima). Badania te oparto na dwóch wieloletnich statycznych doświadczeniach polowych założonych w 1955 roku na czarnej ziemi wyługowanej wytworzonej z gliny zwałowej lekkiej, pylastej i odgórnie spiaszczonej (według World References Base for Soil Resources WRB - Endogleyic Phaeozems) w Stacji Doświadczalnej SGGW (52o06’N, 20o33’E). Uzyskane wyniki wskazują, że zmianowanie z koniczyną czerwoną oraz wieloletnie zróżnicowane nawożenie wpływają na właściwości chemiczne gleby. Po ponad 55 latach gleba w zmianowaniu z rośliną bobowatą charakteryzowała się istotnie wyższą kwasowością i zawartością azotu ogólnego (pH 5,7, Nt 0,76 g kg-1) niż na poletkach bez rośliny bobowatej (pH 6,2, Nt 0,66 g kg-1). Zmianowanie z koniczyną czerwoną zapewniło również większą zawartość przyswajalnych mikroelementów (Mn, Cu, Zn, Fe) w glebie, ale spowodowało około 30% obniżenie zawartości przyswajalnego fosforu (P) i potasu (K) w glebie w porównaniu do zmianowania bez rośliny bobowatej. Odnotowano korzystny wpływ stosowania obornika na pH gleby, na zwiększenie zawartości azotu ogólnego, zawartości przyswajalnego fosforu (P), potasu (K), manganu (Mn) i cynku (Zn).
REFERENCJE (89)
1.
Aberagi, F.V., Okebalama, C.B., Asadu, C.L.A., 2024. Effect of inorganic fertilizers on soil fertility and microbial biomass in the rhizosphere of soybean. Journal of Wastes and Biomass Management 6, 15–20.
https://doi.org/10.26480/jwbm.....
2.
Ahmed, S., Iqbal, M., Ahmad, Z., Iqbal, M.A., Artyszak, A., Sabagh, A.E.L., Alharby, H. F., Hossain, A., 2023. Foliar application of silicon-based nanoparticles improve the adaptability of maize, (Zea mays L.) in cadmium contaminated soils. Environmental Science and Pollution Research 30(14), 41002–41013.
https://doi.org/10.1007/s11356....
3.
Aksahin, V., Gulunay, B. N., Coban, D., Ortas, I., 2023. Under long-term field experiment, the effects of organic and inorganic fertilizers application on maize growth and soil organic carbon sequestration. International Journal of Agricultural and Applied Sciences 4(1), 85–93.
https://doi.org/10.52804/ijaas....
4.
Alzamel, N.M., Taha, E.M. M., Bakr, A.A.A., Loutfy, N., 2022. Effect of organic and inorganic fertilizers on soil properties, growth yield, and physiochemical properties of sunflower seeds and oils. Sustainability 14(19), 12928.
https://doi.org/10.3390/su1419....
5.
Antonkiewicz J., Łabętowicz, J. 2016. Chemical innovation in plant nutrition in a historical continuum from ancient Greece and Rome until modern times. Chemistry Didactics Ecology Metrology 21(1-2), 29-43.
https://doi.org/10.1515/cdem-2....
6.
Bałuch, A., Benedycki, S., 2004. Effects of legume-grass mixtures and mineral fertilization on soil fertility. Annales UMCS, Sec. E 59(1), 441–448. (in Polish with English abstract)
https://czasopisma.up.lublin.p....
7.
Benchaar, C., Pomar, C., Chiquette, J., 2001. Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Canadian Journal of Animal Science 81, 563–574.
https://doi.org/10.4141/A00-09....
8.
Bhatt, M.K., Labanya, R., Joshi, H.C., 2019. Influence of long-term chemical fertilizers and organic manures on soil fertility – a review. UJAR 7(5), 177–188.
https://doi.org/10.13189/ujar.....
9.
Blanchet, G., Gavazov, K., Bragazza, L., Sinaj, S., 2016. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agriculture, Ecosystems Environment 230, 116–126.
https://doi.org/10.1016/j.agee....
10.
Blecharczyk, A., Piechota, T., Małecka, I., 2005. Changes of effect chemical soil properties under long-term cropping systems and fertlization. Fragmenta Agronomica 22(2), 30–38. (in Polish with English abstract).
11.
Bokhtiar, S., Sakurai, K., 2005. Effects of organic manure and chemical fertilizer on soil fertility and productivity of plant and ratoon crops of sugarcane. Archives of Agronomy and Soil Science 51(3), 325–334.
https://doi.org/10.1080/036503....
12.
Czekała, J., 2003. The influence of plants and nitrogen on changes in the ionic composition of the sorption complex. Zeszyty Problemowe Postępów Nauk Rolniczych 493, 585–590. (in Polish with English abstract).
13.
Czekała, J., Gladysiak, S., Jakubus, M., 1996. The effect of acidification on the content of soluble lead, cadmium, chromium and iron in the humus horizon of lessive soil. Zeszyty Problemowe Postępów Nauk Rolniczych 434(2), 867–872. (in Polish with English abstract).
14.
Czuba, R., 1996. The purpose and possibilities of supplementing microelement deficiencies in plants. Zeszyty Problemowe Postępów Nauk Rolniczych 434(1), 55–64. (in Polish with English abstract).
15.
Dhaliwal, S.S., Naresh, R.K., Mandal, A., Singh, R., Dhaliwal, M.K., 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental Sustainability Indicators 1, 100007.
https://doi.org/10.1016/j.indi....
16.
Domnariu, H., Reardon, C.L., Manning, V. A., Gollany, H.T., Trippe, K.M., 2024. Legume cover cropping and nitrogen fertilization influence soil prokaryotes and increase carbon content in dryland wheat systems. Agriculture, Ecosystems Environment 367, 108959.
https://doi.org/10.1016/j.agee....
17.
Fan, J., Ding, W., Chen, Z., Ziadi, N., 2012. Thirty-year amendment of horse manure and chemical fertilizer on the availability of micronutrients at the aggregate scale in black soil. Environmental Science and Pollution Research 19, 2745–2754.
https://doi.org/10.1007/s11356....
18.
Filipek, T., 2001. Natural and anthropological causes and effects of soil acidification. Nawozy i Nawożenie 3(8), 5–26. (in Polish).
19.
Filipek, T., Fotyma, M., Lipiński, W., 2006. The state, causes and effects of acidification of arable soils in Poland. Nawozy i Nawożenie 2(27), 7–38.(in Polish).
20.
Filipek, T., Skowrońska, M., 2013. Current dominant causes and effects of acidification of soils under agricultural use in Poland. Acta Agrophysica, 20(2), 283–294. (in Polish with English abstract)
http://www.acta-agrophysica.or....
21.
Fotyma, M., 2007. Content of potassium in different forms in the soils of southeast Poland. Polish Journal of Soil Science 40(1), 19–32.
22.
Gawrońska-Kulesza, A., Lenart, S., 1987. The effect of multi-year differentiated fertilization on winter wheat yield and some physicochemical properties of the soil. Zeszyty Problemowe Postępów Nauk Rolniczych 322, 225–245. (in Polish).
23.
Gawrońska-Kulesza, A., Lenart, S., Suwara, I., 1989. The influence of long-term organic and mineral fertilization on some chemical properties of the topsoil and subsoil. Roczniki Gleboznawcze – Soil Science Annual 40(1), 21–26. (in Polish).
24.
Geisseler, D., Scow, K. M., 2014. Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biology and Biochemistry 75, 54–63.
https://doi.org/10.1016/j.soil....
25.
Giacometti, C., Mazzon, M., Cavani, L., Triberti, L., Baldoni, G., Ciavatta, C., Marzadori, C., 2021. Rotation and fertilization effects on soil quality and yields in a long term field experiment. Agronomy 11, 636.
https://doi.org/10.3390/agrono....
26.
Han, J.Q., Dong, Y.Y., Zhang, M., 2021. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Applied Soil Ecology 165, 103966.
https://doi.org/10.1016/j.apso....
27.
Harasimowicz-Hermann, G., 1989. The influence of red and Persian clover cultivation fertilized with liquid manure on changes in the chemical properties of light soil. Zeszyty Problemowe Postępów Nauk Rolniczych 377, 145–153. (in Polish).
28.
He, H., Peng, M.W., Lu, W. D., Hou, Z.N., Li, J.H., 2022. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Science of The Total Environment 851, 158132.
https://doi.org/10.1016/j.scit....
29.
Herms, U., 1982. Untersuchungen zur schwermetallöslichkeit in kontaminierten böden und kompostierten siedlungsabfällen in abhängigkeit von bodenreaktion, redoxbedingungen und stoffbestand [PhD Thesis]. University of Kiel.
30.
Hungria, M., Franchini, J.C., Brandão-Junior, O., Kaschuk, G., Souza, R.A., 2009. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Applied Soil Ecology 42(3), 288–296.
https://doi.org/10.1016/j.apso....
31.
ISO 10390, 2005. Soil quality — Determination of pH. International Organization for Standardization, Geneva, Switzerland.
32.
ISO 11261, 1995. Soil quality — Determination of total nitrogen — Modified Kjeldahl method. International Organization for Standardization, Geneva, Switzerland.
33.
Jakubus, M., 2000. The abundance in sulphur of arable light and very light soils of former Poznań region. Folia Universitatis Agriculturae Stetinensis 204, 83–90.
34.
Jakubus, M., Czekała, J., Blecharczyk, A., 1996. The influence of long-term fertlization on microelements fractions in soil. Zeszyty Problemowe Postępów Nauk Rolniczych 434(1), 443–448. (in Polish with English abstract).
35.
Jaskulska, I., Jaskulski, D., 2003. The influence of long-term fertilization on the formation of soil properties. Postępy Nauk Rolniczych 50(4), 21–35. (in Polish with English abstract).
36.
Jaskulska, I., Lemanowicz, J., Breza-Boruta, B., Siwik-Ziomek, A., Radziemska, M., Jaskulski, D., Białek, M., 2020. Chemical and biological properties of sandy loam soil in response to long-term organic–mineral fertilisation in a warm-summer humid continental climate. Agronomy 10(10), 1610.
https://doi.org/10.3390/agrono....
37.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97.
https://doi.org/10.2478/ssa-20....
38.
Kaniuczak, J., 1996. Elements of the microelement balance in soil developed from loess under crop rotation conditions, taking into account mineral fertilization with NPKMgCa. Zeszyty Problemowe Postępów Nauk Rolniczych 434(1), 301–306. (in Polish with English abstract).
39.
Kaniuczak, J., 1998. Acidification of loess soils depending on the methods of use, liming and mineral fertilization. Zeszyty Problemowe Postępów Nauk Rolniczych 456, 113–118. (in Polish with English abstract).
40.
Kebede, E., 2021. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems 5, 767998, 1–18.
https://doi.org/10.3389/fsufs.....
41.
Koper, J., Lemanowicz, J., 2006. Changes in selected biochemical and chemical propertiesof a brown podzolic soil as affected by long-term fertlization with manure and nitrogen. Zeszyty Problemowe Postępów Nauk Rolniczych 512(2), 357–362. (in Polish with English abstract).
42.
Körschens, M., Buś, E., 1982. The influence of different crops on the total carbon content in soil. Archiv Für Acker- Und Pflanzenbau Und Bodenkunde 26(11), 711–716.
43.
Korzeniowska, J., Stanisławska-Glubiak, E., Jadczyszyn, T., Lipiński, W., 2021. Fertilizing agricultural crops with micronutrients. New cutoff values for assessing micronutrient content in soil. IUNG-PIB, Puławy. (in Polish).
44.
Kotwica, K., Breza-Boruta, B., Bauza-Kaszewska, J., Kanarek, P., Jaskulska, I., Jaskulski, D., 2021. The cumulative effect of various tillage systems and stubble management on the biological and chemical properties of soil in winter wheat monoculture. Agronomy 11(9), 1726.
https://doi.org/10.3390/agrono....
45.
Kozłowska-Strawska, J., Kaczor, A., 2004. The influence of plants fertilization by different sulphur compounds on the sulphur sulphate content in soil. Annales UMCS, Sec. E, Agricultura 59(2), 515–520. (in Polish with English abstract)
https://czasopisma.up.lublin.p....
46.
Kuszelewski, L., Łabętowicz, J., 1991. The effects of unbalanced mineral fertilization in the light of a permanent field experiment. Roczniki Gleboznawcze – Soil Science Annual 42(3–4), 9–17. (in Polish with English abstract).
47.
Lenart, S., 2002. Studies on the water resistance of soil aggregates in various crop and plant cultivation systems. Fundacja Rozwój SGGW. (in Polish with English abstract).
48.
Liu, C., Feng, X., Xu, Y., Kumar, A., Yan, Z., Zhou, J., Yang, Y., Peixoto, L., Zeng, Z., Zang, H., 2023. Legume-based rotation enhances subsequent wheat yield and maintains soil carbon storage. Agronomy for Sustainable Development 43, 64.
https://doi.org/10.1007/s13593....
49.
Luo, Y., Liang, J., Zhou, C., 2024. The combination of mineral fertilizer with organic fertilizer improved soil phosphorus availability. All Life 17(1), 2370421.
https://doi.org/10.1080/268952....
50.
Mazur, T., Sądej, W., 1989. The effect of long-term fertilization with slurry, manure and NPK on some chemical and physicochemical properties of soil. Roczniki Gleboznawcze – Soil Science Annual 40(1), 147–153. (in Polish with English abstract).
51.
Mazur, Z., Sienkiewicz, S., Mazur, T., 2015. The influence of multi-year organic and mineral fertilisation on the physicochemical properties of lessive soil. Polish Journal of Soil Science 48(1), 79–89.
http://dx.doi.org/10.17951/pjs....
52.
Menšík, L., Hlisnikovský, L., Pospíšilová, L., Kunzová, E., 2018. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. Journal of Soils and Sediments 18(8), 2813–2822.
https://doi.org/10.1007/s11368....
53.
Mercik, S., Stępień, M., Stępień, W., Sosulski, T., 2005. Dynamics of organic carbon content in soil depending on long-term fertilization and crop rotation. Roczniki Gleboznawcze – Soil Science Annual 54(3/4), 53–60.(in Polish with English abstract).
54.
Mercik, S., Urbanowski, S., Lenart, S., 2009. Yielding and quality parameters of sugar beets depending on fertilization in long-term experiments 26(1), 67–75. (in Polish with English abstract).
55.
Nazarkiewicz, M., Kaniuczak, J., 2012. The influence of liming and mineral fertilization on the content of available forms of phosphorus, potassium and magnesium in haplic luvisols. Soil Science Annual 63(1), 49–54.
https://doi.org/10.2478/v10239... (in Polish with English abstract).
56.
Nowosielski, O., 1974. Methods for determining fertilization needs. PWRiL, Warsaw. (in Polish).
57.
Parat, C., Chaussod, R., Leveque, J., Andreux, F., 2005. Long-term effects of metal-containing farmyard manure and sewage sludge on soil organic matter in a fluvisol. Soil Biology and Biochemistry 37, 673–679.
https://doi.org/10.1016/j.soil....
58.
Pikuła, D., Rutkowska, A., 2020. Selected chemical properties of sandy soil after 36 years of differential fertilization with mineral nitrogen and manure without liming in two crop rotation. Soil Science Annual 71(3), 246–251.
https://doi.org/10.37501/soils....
59.
PN-R-04023, 1996. Chemical-agricultural analysis of soil — Determination of available phosphorus in soils — Egner-Riehm method (PE-R). Polish Committee for Standardization, Warsaw. (in Polish).
60.
PN-R-04022, 1996. Chemical-agricultural analysis of soil — Determination of available potassium in soils — Egner-Riehm method (DL). Polish Committee for Standardization, Warsaw. (in Polish).
61.
Rutkowska, B., Szulc, W., Łabętowicz, J., Korc, M., Salajczyk, M., 2002. Fertilization system as a factor determining the soil's abundance of available forms of nutrients. Zeszyty Problemowe Postępów Nauk Rolniczych 484(2), 537–547. (in Polish with English abstract).
62.
Rutkowska, B., Szulc, W., Sosulski, T., Stępień, W., 2014. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant, Soil and Environment 60(5), 198–203.
https://doi.org/10.17221/914/2....
63.
Sainju, U., Lenssen, A., Allen, B., Stevens, W., Jabro, J., 2017. Soil residual nitrogen under various crop rotations and cultural practices. Journal of Plant Nutrition and Soil Science 180(2), 187–198.
https://doi.org/10.1002/jpln.2....
64.
Sathish, A., Ramachandrappa, B.K., Shankar, M.A., Srikanth Babu, P.N., Srinivasarao, Ch., Sharma, K.L., 2016. Long-term effects of organic manure and manufactured fertilizer additions on soil quality and sustainable productivity of finger millet under a finger millet–groundnut cropping system in southern India. Soil Use and Management 32, 311–321.
https://doi.org/10.1111/sum.12....
65.
Sienkiewicz, S., 2003. The impact of manure and mineral fertilizers on soil fertility and productivity (Vol. 74). University of Warmia and Mazury in Olsztyn. (in Polish with English abstract).
66.
Siwik-Ziomek, A., Koper, J., 2013. Effect of manure fertilisation and plant selection on the content of sulphates (vi) and the activity of arylsulphatase in luvisol. Proceedings of ECOpole 7(1), 241–246.
https://doi.org/10.2429/proc.2....
67.
Skuta I., Kołodziej B., Filipek-Mazur B., Antonkiewicz J., 2025. The use of carbonate-clay flour, sewage sludge and waste sulfate sulfur as fertilizer agents. Resources 14(7), 113.
https://doi.org/10.3390/resour....
68.
Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł., Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143–170.
https://doi.org/10.7163/GPol.0....
69.
Soman, C., Li, D., Wander, M.M., Kent, A.D., 2017. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant and Soil 413(1–2), 145–159.
https://doi.org/10.1007/s11104....
70.
Sosulski, T., Stępień, M., Szara, E., Mercik, S., 2005. Content of total nitrogen in soils and the balance of N in long-term experiments in Skierniewice. Fragmenta Agronomica 22(1), 264–273. (in Polish with English abstract).
71.
Stanisławska-Glubiak, E., Wróbel, S., 1999. Development of chemical properties of light soil under conditions of long-term mineral or organic fertilization. Zeszyty Problemowe Postępów Nauk Rolniczych 467(1), 225–231. (in Polish with English abstract).
72.
Suwara, I., Gawrońska-Kulesza, A., 1994. The effect of long-term fertilization on soil properties and plant yield. Part II. Plant yield. Roczniki Nauk Rolniczych, Seria A 110(3–4), 117–127. (in Polish with English abstract).
73.
Suwara, I., Pawlak-Zaręba, K., Gozdowski, D., Leszczyńska, R., 2024. The role of red clover and manure fertilization in the formation of crop yield of selected cereals. Agriculture 14(11), 2064.
https://doi.org/10.3390/agricu....
74.
Szulc, W., Rutkowska, B., Bomze, K., Felak, E., 2007. The influence of long-term differentiated crop rotation and fertilization on content of microelements in soil. Fragmenta Agronomica 24(1), 248–253. (in Polish with English abstract).
75.
Szulc, W., Rutkowska, B., Łabętowicz, J., 2004. Trace element balance in crop rotation in a permanent fertilization experiment. Zeszyty Problemowe Postępów Nauk Rolniczych 502(1), 363–369. (in Polish with English abstract).
76.
Thapa, S., Bhandari, A., Ghimire, R., Xue, Q., Kidwaro, F., Ghatrehsamani, S., Maharjan, B., Goodwin, M., 2021. Managing micronutrients for improving soil fertility, health, and soybean yield. Sustainability 13, 11766.
https://doi.org/10.3390/su1321....
77.
Tkaczyk, P., Bednarek, W., 2011. Evaluation of soil reaction (pH) in the Lublin region. Acta Agrophysica 18(1), 173–186. (in Polish with English abstract).
78.
Van Der Pol, L.K., Robertson, A., Schipanski, M., Calderon, F.J., Wallenstein, M.D., Cotrufo, M. F., 2022. Addressing the soil carbon dilemma: Legumes in intensified rotations regenerate soil carbon while maintaining yields in semi-arid dryland wheat farms. Agriculture, Ecosystems Environment 330, 107906.
https://doi.org/10.1016/j.agee....
79.
Wang, Y., Shi, M., Zhang, R., Zhang, W., Liu, Y., Sun, D., Wang, X., Qin, S., Kang, Y., 2023. Legume-potato rotation affects soil physicochemical properties, enzyme activity, and rhizosphere metabolism in continuous potato cropping. Chemical and Biological Technologies in Agriculture 10, 132.
https://doi.org/10.1186/s40538....
80.
Wei, X., Hao, M., Shao, M., Gale, W.J., 2006. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil and Tillage Research 91, 120–130.
https://doi.org/10.1016/j.stil....
81.
Wojnowska, T., Panak, H., Sienkiewicz, S., Wojtas, A., 1993. Changes in physicochemical properties under long-term fertilization with potassium, magnesium and sodium. Zeszyty Naukowe Akademii Rolniczej w Krakowie 37(cz. I), 65–74. (in Polish with English abstract).
82.
Wortman, S.E., Galusha, T.D., Mason, S. T., Francis, C.A., 2011. Soil fertility and crop yields in long-term organic and conventional cropping systems in Eastern Nebraska. Renewable Agriculture and Food Systems 27, 200–216.
https://doi.org/10.1017/S17421....
83.
Wu, Z., Chen, X., Lu, X., Zhu, Y., Han, X., Yan, J., Yan, L., Zou, W., 2024. Impact of combined organic amendments and chemical fertilizers on soil microbial limitations, soil quality, and soybean yield. Plant and Soil 507(1), 317–334.
https://doi.org/10.1007/s11104....
84.
Yang, Q., Li, J., Xu, W., Wang, J., Jiang, Y., Ali, W., Liu, W., 2024. Substitution of inorganic fertilizer with organic fertilizer influences soil carbon and nitrogen content and enzyme activity under rubber plantation. Forests 15, 756.
https://doi.org/10.3390/f15050....
85.
Yu, H., Wang, F., Shao, M., Huang, L., Xie, Y., Xu, Y., Kong, L., 2021. Effects of rotations with legume on soil functional microbial communities involved in phosphorus transformation. Frontiers in Microbiology 12, 661100.
https://doi.org/10.3389/fmicb.....
86.
Zemichael, B., Dechassa, N., 2018. Effect of mineral fertilizer, farmyard manure, and compost on yield of bread wheat and selected soil chemical properties in Enderta District, Tigray Regional State, Northern Ethiopia. East African Journal of Sciences 12(1), 29–40.
https://doi.org/10.20372/eajs.....
87.
Zhang, S.X., Wang, X.B., Jin, K., 2001. Effect of different N and P levels on availability of zinc, copper, manganese and iron under arid conditions. Plant Nutrition and Fertilizer Science 7, 391–396.
https://dx.doi.org/10.11674/zw....
88.
Zhao, N., Ma, J., Wu, L., Li, X., Xu, H., Zhang, J., Wang, X., Wang, Y., Bai, L., Wang, Z., 2024. Effect of organic manure on crop yield, soil properties, and economic benefit in wheat-maize-sunflower rotation system, Hetao Irrigation District. Plants 13, 2250.
https://doi.org/10.3390/plants....
89.
Zhuang, L., Wang, P., Hu, W., Yang, R., Zhang, Q., Jian, Y., Zou, Y., 2024. A comprehensive study on the impact of chemical fertilizer reduction and organic manure application on soil fertility and apple orchard productivity. Agronomy 14, 1398.
https://doi.org/10.3390/agrono....