PL EN
PRACA ORYGINALNA
DRIFT and UV-VIS spectroscopic characterization of humic substances in grasslands after organic and mineral fertilization
 
Więcej
Ukryj
1
Mendel University in Brno, Faculty of AgriSciences, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Zemědělská 1, 613 00 Brno, Czech Republic
 
2
Czech Agrifood Research Centre, Division of Crop Management Systems, Drnovská 507/73, 161 00 Prague, Czech Republic
 
3
Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Geology and Pedology, Zemědělská 3, 613 00 Brno, Czech Republic
 
 
Data nadesłania: 27-03-2025
 
 
Data ostatniej rewizji: 23-06-2025
 
 
Data akceptacji: 25-08-2025
 
 
Data publikacji online: 25-08-2025
 
 
Data publikacji: 25-08-2025
 
 
Autor do korespondencji
Jana Plisková   

Division of Crop Management Systems, Czech Agrifood Research Centre, Drnovská 507/73, 161 00, Praha, Czech Republic
 
 
Soil Sci. Ann., 2025, 76(3)
 
SŁOWA KLUCZOWE
STRESZCZENIE
Changes in the chemical composition and stability of humic substances after soil amendment with mineral and organic materials were studied. The study site, a Gleyic Fluvisol (Jaroměřice locality, Pardubice Region, Czech Republic), was under permanent grassland managed intensively (four cuts per year) and fertilised as follows: manure and slurry at a rate of 2 livestock units = 120 kg N per ha. The fertilisation treatments included: C – control (no fertilisation); FYM – farmyard manure (30.0 t ha-1); CS – cattle slurry (29.0 t ha-1); DIG – digestate (29.0 t ha-1); NPK – mineral fertilizer (120-30-60 kg ha-1). The study aimed to evaluate changes in the structural composition and stability of humic substances during the period 2022–2024, with the goal of providing a knowledge base for farmers to develop best practices for maintaining soil carbon stocks under intensive agricultural conditions. Humic substances (humic and fulvic acids) were extracted with a mixture of 0.1 M NaOH and 0.1 M Na4P2O7 /1:1, w/w. Further, humic acids (HA) were isolated according to the standard IHSS method and characterized using UV-VIS and DRIFT spectroscopy. Calculated indices showed higher HA stability and wettability after FYM, DIG, and CS application in comparison with NPK and control. The differences were found in the content of labile aliphatic hydrophobic groups (at 3000–2800 cm-1), aromatic stable and resistant C=C groups (at 1660–1580 cm-1), and hydrophilic amido-, carboxylic-, keto-groups (at 1740–1600 cm-1). The amount of hydrophilic resistant groups at 1660–1580 cm-1 was comparable at all sites. DRIFT and UV-VIS spectral methods were proposed as rapid tools for assessing humic substance quality instead of the laborious and time-consuming classical fractionation method.
REFERENCJE (62)
1.
Bicharanloo, B., Bagheri, S. M., Cavagnaro, T. R., Keitel, C., Dijkstra, F. A., 2025. Nitrogen fertilisation reduces the contribution of root-derived carbon to mineral-associated organic matter formation at low and high defoliation frequencies in a grassland soil. Plant and Soil, 508(1), 925–938 https://doi.org/10.1007/s11104....
 
2.
Bispo, A., Andersen, L., Angers, D.A., Bernoux, M., Brossard, M., Cécillon, L., Comans, R.N.J., Harmsen, J., Jonassen, K., Lamé, F., Lhuillery, C., Maly S., Martin, E., Mcelnea, A.E., Sakai, H., Watabe, Y., Eglin, T.K., 2017. Accounting for carbon stocks in soils and measuring GHGs emission fluxes from soils: Do we have the necessary standards? Frontiers in Environmental Science 5, 41. https://doi.org/10.3389/fenvs.....
 
3.
Borůvka, L., Penížek, V., Zádorová, T., Pavlů, L., Kodešová, R., Kozák, J., Janků, J., 2022. Soil priorities for the Czech Republic. Geoderma Regional 29, e00525.
 
4.
Bramble, D.S.E., Ulrich, S., Schöning, I., Mikutta, R., Brandt, L., Poll, C., Kandeler, E., Mikutta, C., Konrad, A., Siemens, J., Yang, Y., Polle, A., Schall, P., Ammer, C., Kaiser, K., Schrumpf, M., 2024. Formation of mineral-associated organic matter in temperate soils is primarily controlled by mineral type and modified by land use and management intensity. Global Change Biology 30(1), 1–19. https://doi.org/10.1111/gcb.17....
 
5.
Coates, K.D., 2000. Conifer seedling response to northern temperate forest gaps. Forest Ecology and Management, 127(1-3), 249–269.
 
6.
Cornu, S., Keesstra, S., Bispo, A., Fantappie, M., van Egmond, F., Smreczak, B., Wawer, R., Pavlů, L., Sobocká, J., Bakacsi, Z., Farkas-Iványi, K., Molnár, S., Moller, A., Madenoglu, S., Feiziene, D., Oorts, K., Schneider, F., Gonçalves, M., Mano, R., Garland, G., Skalský, R., O'Sullivan, L.M., Kasparinskis, R., Chenu, C., 2023. National soil data in EU countries, where are we? European Journal of Soil Science, 74(4), e13398.
 
7.
Culek, M., Grulich, V., Buček, A., Kyjovský, Š., Hartl, P., Hrabica, A., Kocián, J., Lacina, J., 2005. Biogeographical division of the Czech Republic part II. EkoCentrum Brno and Agency of nature and landscape protection. Prague: Kontura design. (In Czech).
 
8.
Del Vecchio, R., Blough, N.V., 2004. On the origin of the optical properties of Humic Substances. Environmental Science Technology 38, 3885–3891.
 
9.
Demyan, M.S., Rasche, F., Schulz, E., Breulmann, M., Muller, T., Cadisch, G., 2012. In: Use of specific peaks by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. European Journal of Soil Science 63, 189–199.
 
10.
Deru, J.G.C., Bloem, J., de Goede, R., Brussaard, L., van Eekeren, N., 2023. Effects of organic and inorganic fertilizers on soil properties related to the regeneration of ecosystem services in peat grasslands. Applied Soil Ecology 187, 104838. https://doi.org/10.1016/j.apso....
 
11.
Doran, J.W., Sarrantonio, M., Liebig, M., 1996. Soil health and sustainability. In: Sparks, D.L. (Ed.), Advances in Agronomy 56, San Diego.
 
12.
Doran, J.W., 2002. Soil health and global sustainability: translating science into practice. Agriculture, Ecosystems and Environment 88, 119–127.
 
13.
Duong, T.T.T., Penfold, C., Marschner, P., 2012. Differential effects of composts on properties of soils with different textures. Biology and Fertility of Soils 48(6), 699–707.
 
14.
Egan, G., Zhou, X., Wang, D., Jia, Z., Crawley, M. J., Fornara, D., 2018. Long-term effects of grassland management on soil microbial abundance: implications for soil carbon and nitrogen storage. Biogeochemistry 141(2), 213–228. https://doi.org/10.1007/s10533....
 
15.
Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.-O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal 69, 57–66.
 
16.
Feszterová, M., Kowalska, M., Hudec, M., 2024. Assessing the Impact of Soil Humic Substances, Textural Fractions on the Sorption of Heavy Metals (Cd, Pb). Applied Sciences 14(7), 2806. https://doi.org/10.3390/app140....
 
17.
Gholizadeh, A., Žížala, D., Saberioon, M., Borůvka, L., 2018. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment 218, 89–103.
 
18.
Gholizadeh, A., Viscarra Rosse,l R.A., Saberioon, M., Borůvka, L., Pavlů, L., 2021. National-scale forest soil carbon content characterizing using reflectance spectroscopy. Geoderma 385, 114832.
 
19.
Hendricks, S., Zechmeister-Boltenstern, S., Kandeler, E., Sanden T., Diaz-Pines E., Schnecker, J., Alber, O., Miloczki, J., Spiegel, H., 2022. Agricultural management affects active carbon and nitrogen mineralisation potential in soils. Journal of Plant Nutrition and Soil Science 185(4), 513–528.
 
20.
Hudec, M., 2012. Qualitative indicators of humus in soils of perennial grasslands. 13th International Scientific Conference of PhD. Students, Young Scientists and Pedagogues.
 
21.
Jamroz, E., Jerzykiewicz, M., 2022. Humic fractions as indicators of soil organic matter responses to clear-cutting in mountain and lowland conditions of southwestern Poland. Land Degradation and Development 33, 368–378.
 
22.
Karabcová, H., Pospíšilová, L., Fiala, K., Škarpa, P., Bjelková, M., 2015. Effect of organic fertilizers on soil organic carbon and risk trace elements content in soil under permanent Grassland. Soil and Water Research 10(4), 228–235. https://doi.org/10.17221/5/201....
 
23.
Kochiieru, M., Lamorski, K., Feiziene, D., Feiza, V., Slepetiene, A., Volungevicius, J., 2022. Land use and soil types affect macropore network, organic carbon and nutrient retention, Lithuania. Geoderma Regional 28, e00473.
 
24.
Komárek, P., Kohoutek, A., Fiala, J, Nerusil, P., Odstrčilová, V., 2005. Production and quality of grass forage in relation to stocking rate and mowing frequency. [In:] Lillak, R., Viiralt, R., Linke, A., Geherman, V. (Ed.) Grassland Science In Europe. Integrating effective rangeland management and biodiversity. Kreutzwaldi 56, Tartu, 51014, Estonsko: Estonian Grassland Soc-Egs. 573–576.
 
25.
Kononova, M.M., Bělčiková, N.P., 1963. Organičeskoje veščestvo počvy - Soil organic matter. Moscow State University, Moscow. 228–234. (In Russian).
 
26.
Kumada, K., 1987. Chemistry of soil organic matter. Tokyo: Japan Scientific, 270 p.
 
27.
Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature 528, 60–68.
 
28.
Lehmann, J., Bossio, D.A., Kögel-Knabner, I., Rillig, M.C., 2020. The concept and future prospects of soil health. Nature Reviews Earth and Environment 1, 544–553.
 
29.
Lei, W., Pan, Q., Teng, P., Yu, J., Li, N., 2023. How does soil organic matter stabilize with soil and environmental variables along a black soil belt in Northeast China? An explanation using FTIR spectroscopy data. Catena 228, 107152. https://doi.org/10.1016/j.cate....
 
30.
Lei, K., Bucka, F. B., Just, C., van Grinsven, S., Floßmann, S., Dannenmann, M., Völkel, J., Kögel-Knabner, I., 2025. Distinct impact of land use and soil development processes on coupled biogeochemical cycling of C, N and P in a temperate hillslope-flood plain system. Biogeochemistry 168(1). https://doi.org/10.1007/s10533....
 
31.
Leue, M., Ellerbrock, R.H., Gerke, H.H., 2010. DRIFT mapping of organic matter composition at intact soil aggre­gate surfaces. Vadose Zone Journal 9, 317–324.
 
32.
Lichtenberg, E., 2024. Thinking about soil health: A conceptual framework. Soil Security 14.
 
33.
Machado, W., Franchini, J.C., Guimarães, M.F., Filho, J.T., 2020. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 6, e04078.
 
34.
Madejová, J., 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 31, 1–10.
 
35.
Mayhew, L., Singh, A. P., Li, P., Perdue, E. M., 2023. Differentiation Between Humic and Non-Humic Substances Using Alkaline Extraction and Ultraviolet Spectroscopy. Journal of AOAC International, 106(3), 748–759. https://doi.org/10.1093/jaoaci....
 
36.
Menšík, L., Nerušil, P., 2019. Production, qualitative and stand changes of permanent grassland in relation to the intensity of utilization and fertilization level in the Malá Haná region. Praha: Crop Research Institute. 122. ISBN 978-80-7427-319-3. (In Czech).
 
37.
Nazaries, L., Singh, B.P., Sarker, J.R., Fang, Y., Klein, M., Singh, B.K., 2021. The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agriculture, Ecosystems and Environment 307, 107206.
 
38.
Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. [In:] Page, A.L., Miller, R.H., Keeney, D.R. (eds.). Methods of soil analysis. Part 2. ASA, SSSA Publ., Madison, Wisconsin, 539–579.
 
39.
Němeček, J., Mühlhanselová, M., Macků, J., Vokoun, J., Vavříček, D., Novák, P., 2011. Taxonomický klasifikační systém půd České republiky. ČZU Praha, Praha, 93 p. ISBN 978-80-213-2155-7 (In Czech).
 
40.
Nobile, C.M., Bravin, M.N., Becquer, T., and Paillat, J., 2020. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in the soil as compared to phosphorus accumulation. Chemosphere 239, 124709. https://doi.org/10.1016/j.chem....
 
41.
Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., Prokeš, R., 2021a. The Impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil and Tillage Research 205, 104748.
 
42.
Pavlů, L., Sobocká, J., Borůvka, L., Penížek, V. et al., 2021b. Stocktaking on soil quality indicators and associated decision support tools, including ICT tools; Deliverable 2.2, report from WP2 of project EJP SOIL Towards climate-smart sustainable management of agricultural soils. www.ejpsoil.eu (accessed 16 September 2024).
 
43.
Pavlů, L., Kodešová, R., Vašát, R., Fér, M., Klement, A., Nikodem, A., Kapička, A., 2022. Estimation of the stability of topsoil aggregates in areas affected by water erosion using selected soil and terrain properties. Soil and Tillage Research 219, 105348.
 
44.
Pavlů, L., Zádorová, T., Pavlů, J., Tejnecký, V., Drábek, O., Reyes Rojas, J., Thai, S., Penížek V., 2023a. Prediction of the distribution of soil properties in deep Colluvisols in different pedogeographic regions (Czech Republic) using diffuse reflectance infrared spectroscopy. Soil and Tillage Research 234, 105844.
 
45.
Pavlů, L., Balík, J., Procházková, S., Vokurková, P., Galušková, I., Sedlář, O., 2023b. Soil organic matter quality of variously managed agricultural soil in the Czech Republic evaluated using DRIFT spectroscopy. Soil and Water Research 18(4), 281–291.
 
46.
Piccolo, A., 2002. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advance Agronomy 75, 57–134.
 
47.
Pliskova, J., Pospíšilová, L., Nerušil, P., Šimon, T., Menšík, L., 2023. Effect of grasslands fertilisation on soil organic matter quality and nutrients status. Agriculture (Poľnohospodárstvo) 69(3), 129–140.
 
48.
Pospíšilová, L., Vlček, V., Hybler, V., 2016. Standard analytical methods and evaluation criteria of soil physical, agrochemical, biological and hygienic parameters. Mendel Universiti in Brno: Folia Universitatis Agriculturae at Silviculturae Mendelianae Brunensis, Brno.
 
49.
Pospíšilová, L., Komínková, M., Zítka, O., Kízek, R., Barančíková, G., Litavec, T., Lošák, T., Hlušek, J., Martensson, A., Liptaj, T., 2015. Fate of humic acids isolated from natural humic substances. Acta Agric. Scandinavica, Section B – Soil Plant Sci. 65/6, 517–528.
 
50.
Qi, L., Zhang, M., Yin, J., Ren, W., Sun, S., Chen, Z., Yuan, T., Guo, L., 2023. The interactive effect of grazing and fertilizer application on soil properties and bacterial community structures in a typical grassland in the central Inner Mongolia Plateau. Frontiers in Ecology and Evolution 11, 1–14. https://doi.org/10.3389/fevo.2....
 
51.
Rabot, E., Saby, N.P.A., Martin, M.P., Pierre Barré, P., Chenu, C., Cousin, I., Arrouays D., Angers D., Bispo A., 2024. Relevance of the organic carbon to clay ratio as a national soil health indicator. Geoderma 443, 116829.
 
52.
Rambaut, L.A.E., Tillard, E., Vayssières, J., Lecomte, P., Salgado, P., 2022. Trade-off between short and long-term effects of mineral, organic or mixed mineral-organic fertilisation on grass yield of tropical permanent grassland. European Journal of Agronomy 141. https://doi.org/10.1016/j.eja.....
 
53.
Stevenson, F.J., 1994. Humus Chemistry, Genesis, Composition, Reactions. 2nd Ed. New York.
 
54.
Thabit, F.N., Negim, O.I.A., Abdel Rahman, M.A.E., Scopa, A., Moursy, A.R.A., 2024. Using Various Models for Predicting Soil Organic Carbon Based on DRIFT-FTIR and Chemical Analysis. Soil Systems 8(1). https://doi.org/10.3390/soilsy....
 
55.
Thai, S., Davídek, T., Pavlů, L., 2022. Causes clarification of the soil aggregates stability on mulched soil. Soil and Water Research 17(2), 91–99.
 
56.
Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O., 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75.
 
57.
Voltr, V., Menšík, L., Hlisnikovský, L., Hruška, M., Pokorný, E., Pospíšilová, L., 2021. The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 11, 779. https://doi.org/10.3390/agrono....
 
58.
Wang, Q., Zhu, Y., Xu, L., Chen, B., Liu, Ch., Ma, X., Meng, Q., Liu, B., Huang, Z., Jiao, Y., Yuan, Y., 2023. Responses of soil humus composition and humic acid structural characteristics to the addition of different types of biochar in Phaeozems. Journal of Soil Science and Plant Nutrition 23, 1611–1618.
 
59.
Whelan, A., Kechavarzi, C., Coulon, F., Sakrabani, R., Lord R., 2013. Influence of compost amendments on the hydraulic functioning of brownfield soils. Soil Use and Management 29(2), 260–270.
 
60.
Wood, S.A., Blankinship, J.C., 2022. Making soil health science practical: guiding research for agronomic and environmental benefits. Soil Biology and Biochemistry 172, 108776.
 
61.
Xiang, X., Liu, J., Zhang, J., Li, D., Xu, C., Kuzyakov, Y., 2020. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization. Soil and Tillage Research 196, 104491. https://doi.org/10.1016/j.stil....
 
62.
Xu, M., Liu, Y., Xi, J., Li, S., Li, Z., 2024. Optimization of soil hydrological properties in degraded grasslands by soil amendments. Journal of Hydrology 643, 131946. https://doi.org/10.1016/j.jhyd....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top