PRACA ORYGINALNA
High-resolution baseline digital mapping of soil fertility in the Euphrates basin, western Iraq
Więcej
Ukryj
1
Higher Agronomic Institute of Chott Meriem, University of Sousse, Tunisia
2
College of Agriculture, University of Al-Anbar, Iraq
Data nadesłania: 15-09-2024
Data ostatniej rewizji: 06-03-2025
Data akceptacji: 01-07-2025
Data publikacji online: 01-07-2025
Data publikacji: 01-07-2025
Autor do korespondencji
Jammal Abed Hammad
Higher Agronomic Institute of Chott Meriem, University of Sousse, Tunisia
Soil Sci. Ann., 2025, 76(3)207765
SŁOWA KLUCZOWE
STRESZCZENIE
Digital Soil Mapping is a vital tool used to produce outputs for Digital Soil Assessment, facilitating analyses and recommendations for various environmental practices. Despite its significance, DSM has not been widely applied to soil fertility assessment due to the challenges associated with integrating multiple soil properties into a single map. Therefore, this study aimed to develop a new digital soil fertility map using higher-resolution data. The research was conducted in the Al-Anbar district, located in the Euphrates basin in western Iraq. Spectral indices and signature data from Sentinel-2 were utilized for soil sampling, supplemented by local ground measurements. Principal Component Analysis (PCA) was then employed to identify the most relevant soil fertility indicators. Subsequently, a digital soil map was generated using a Multiple Linear Regression (MLR) model. The results indicated that soil fertility was significantly represented by soil total nitrogen and phosphorus content. Moreover, the MLR model for soil fertility included soil moisture (SM), brightness index (BI), colour index (VI), green chlorophyll index (CIgreen), and B8A. Our approach demonstrated the potential of remote sensing and multiple linear modelling for soil fertility mapping, with an RMSE, R², and MAE of 1.11, 0.98, and 0.68, respectively. These findings suggest that integrating remote sensing with multiple linear regression modelling provides an effective method for accurately estimating soil properties over large areas, offering considerable benefits in terms of cost, efficiency, coverage, and the ability to monitor changes over time.
REFERENCJE (77)
1.
Abed Hammad, J., M’nassri, S., Chaabane, B., Al-Bayati, A.H., Majdoub, R., 2024. Assessing agricultural potential of abandoned land in the Eupherates basin: Soil fertility modelling and geostatistical analysis. Modelling Earth Systems and Environment 10, 4627–4639.
https://doi.org/10.1007/s40808....
2.
Andreatta, D., Gianelle, D., Scotton, M., Dalponte, M., 2022. Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery. Ecological Indicators 141, 109102.
https://doi.org/10.1016/j.ecol....
3.
Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richer-de-Forges, A.C., Morgan, C.L.S., Roudier, P., Poggio, L., Mulder, V.L., 2020. Impressions of digital soim maps: The goods, the not so good, and making them ever better. Geoderma Regional 20, e00255.
https://doi.org/10.1016/j.geod....
4.
Bao, Y., Yao, F., Meng, X., Wang, J., Liu, H., Wang, Y., Liu, Q., Zhang, J., Mouazen, A.M., 2024. A fine digital soil mapping by integrating remote-based process model and deep learning method in Northeast China. Soil and Tillage Research 238, 106010.
https://doi.org/10.1016/j.stil....
5.
Blackford, C., Heung, B., Webster, K.L., 2022. Incorporating spatial uncertainty maps into soil sampling improves digital soil mapping classification accuracy in Ontario, Canada. Geoderma Regional 29, e00495.
https://doi.org/10.1016/j.geod....
6.
Chlingaryan, A., Sukkarieh, S., Whelan, B., 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Computers and Electronics in Agriculture 1511, 61–69.
https://doi.org/10.1016/j.comp....
7.
Congedo, L., 2016. Semi-Automatic Classification Plugin Documentation Release 4.8.0.1.
8.
Dasgupto, S., Debnath, S., Das, A., Biswas, A., Weindorf, D.C., Li, B., Shukla, A.K., Das, S., et al. .2023. Developping regional soil micronutrient management strategies through ensemble learning based digital soil mapping. Geoderma 433, 116457.
https://doi.org/10.1016/j.geod....
9.
Diaz-Gonzalez, F., Vuelvas, J., Correa, C.A., Vallejo, V.E., Patino, D., 2022. Machine learning and remote sensing techniques applied to estimate soil indicators-Review. Ecological Indicators 135, 108517.
https://doi.org/10.1016/j.ecol....
10.
Douaoui, A.K., Nicolas, H., Walter, Ch., 2006. Detecting salinity hazard within a semiarid context by means of combining soil and remote sensing data. Geoderma 134 (1-2), 217–230.
https://doi.org/10.1016/j.geod....
11.
Du, P., Bai, X., Tan, K., Xue, Z., Samat, A., Xia, J., et al. 2020. Advances of four machine learning methods for spatial data handling: a review. Journal of Geovisualization and Spatial Analysis 4, 13.
https://doi.org/10.1007/s41651....
12.
Dvornikov, Y., Slukovskaya, M.V., Yaroslavtsev, A., Meshalkina, J., Ryazanov, A.V., Sarzhanov D., Vasenev, V., 2022. High-resolution mapping of soil pollution by Cu and Ni at a popular industrial barren area using proximal and remote sensing. Land Degradation & Development 33, 1731–1744.
https://doi.org/10.1002/ldr.42....
13.
Dong, E., Liu, J., Qian, B., He, L., Liu, J., Jing, Q., Champagne, C., McNairn, H., Powers, J., Shi, Y., Chen, J., Shang, J., 2020. Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. ISPRS Journal of Photogrammetry and Remote Sensing 168, 236–250.
https://doi.org/10.1016/j.ispr....
14.
Escadafal, R., 1989. Remote sensing of arid soil surface color with Lanat Thematic Mapper. Advances in Space Research 9(1), 159–163.
https://doi.org/10.1016/0273-1....
15.
Esmaeilizad, A., Shokri, R., Davatgar, N., Dolatabad, H., 2024. Exploring the driving forces and digital mapping of soil biological properties in semi-arid regions. Computers and Electronics in Agriculture 220, 108891.
https://doi.org/10.1016/j.comp....
16.
European Space Agency, 2010. GMES Sentinel-2 mission requirements document. In:.
17.
Technical Report Issue 2 Revision 1.
18.
Gagkas, Z., Lilly, A., Baggaley, N.J., 2021. Digital soil maps can perform as well as large-scale conventional soil maps for the prediction of catchment baseflows. Geoderma 400, 115230.
https://doi.org/10.1016/j.geod....
19.
Geng, J., Tan, Q., Lv, J., Fang, H., 2024. Assessing spatial variations in soil organic carbon and C:N in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil Tillage and Research 235, 105897.
https://doi.org/10.1016/j.stil....
20.
Grinand, C., Le Maire, G., Vieilledent, G., Razakamanarivo, H., Razafimbelo, T., 2017. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing. International Journal of Applied Earth Observation and Geoinformation 54, 1–14.
https://doi.org/10.1016/j.jag.....
21.
Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58, 289–298.
https://doi.org/10.1016/S0034-....
22.
Gholizadeh, A., Zizala, D., Saberioon, M., Boruvka, L., 2018. Soil organic carbon and texture retrieving and mapping using proximal airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment 218, 89–103.
https://doi.org/10.1016/j.rse.....
23.
Guo, P.T., Li, M.F., Luo, W., Tang, Q.F., Liu, Z.W., Lin, Z.M., 2015. Digital of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach. Geoderma 237, 49–59.
https://doi.org/10.1016/j.geod....
24.
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Ferreira, L.G., 2002. Overview of the radiometric and physiological performance of the MODIS vegetation indices. Remote Sensing of Environment 83 (1-2), 195–213.
https://doi.org/10.1016/S0034-....
25.
Huan, S., Zhang, W. J., Yu, X.C., Huang, Q.R., 2010. Effects of long-term fertilizer on corn productivity and its sustainability in an Ultisol of southern China. Agriculture, Ecosystems and Environment 138 (1-2), 44–50.
https://doi.org/10.1016/j.agee....
27.
Justin Fagnombo D., Jean-Martial, J., Saito, K., 2022. Ca soil fertility properties in rice fields in ssub-Saharan Africa be predicted by digital soil information? A case study of AsoilGrids250m. Geoderma Regional, e00563.
https://doi.org/10.1016/j.geod....
28.
Kasampalis, D., Alexandridis, T., Deva, C., Challinor, A., Moshou, D., Zalidis, G., 2018. Contribution of remote sensing on crop models: a review. Journal of Imaging 4(4), 52.
https://doi.org/10.3390/jimagi....
29.
Kaufman, Y., Tanre, D., 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing 30, 261–270.
https://doi.org/10.1109/36.134....
30.
Hounkpatin, O., De Hipt, F., Bossa, A., Welp, G., Amelung, W., 2018. Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkin Faso). Catena 166, 298–309.
https://doi.org/10.1016/j.cate....
31.
Kumar, U., Nayak, A.K., Shahid, M., Gupta, V., Panneerslvan, P., Mohantry, S., Kaviraj, M., Kumar, A., Chatterjee, D., Lal, B., Gautam, P., Tripathi, R., Panda, B., 2018. Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agriculture, Ecosystems and Environment 262, 65–75.
https://doi.org/10.1016/j.agee....
32.
Lopez-Ballesteros, A., Nielson, A., Gastellanos-Osorio, G., Trolle, D., Senent-Aparicio, J., 2023. DSOLMap, a novel high-resolution global digital soil property map for the SWAT+model: Development and hydrological evaluation. Catena 231, 107339.
https://doi.org/10.1016/j.cate....
33.
Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., Shearer S., 2018. Integration of high-resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Computers and Electronics in Agriculture 153, 213–225.
https://doi.org/10.1016/j.comp....
34.
Marsett, R.C., Qi, J., Heilman, P., Biedenbender, S.H., Watson, M.C., Amer, S., Weltz, M., Goodrich, D., Marsett, R., 2006. Remote sensing for grassland management in the arid southwest. Rangeland Ecology and Management 59, 530–540.
https://doi.org/10.2111/05-201....
35.
Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Machine learning in agriculture: a review. Sensors 18, 1–29.
https://doi.org/10.3390/s18082....
36.
Liu, F., Zhang, J., Wang, S., Zou, J., Zhen, P., 2023. Multivariate statistical analysis of chemical and stable isotopic data as indicative of groundwater evolution with reduced exploitation. Geoscience Frontiers 14, 101476.
https://doi.org/10.1016/j.gsf.....
37.
Li, Y., Feng, X., Huai, Y., Hassan, M., Cui, Z., Ning, P., 2024. Enhancing crop productivity and resilience by promoting soil organic carbon and moisture in wheat and maize rotation. Agriculture, Ecosystems and Environment 368, 109021.
https://doi.org/10.1016/j.agee....
38.
Lu, Q., Tian, S., Wei, L., 2023. Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning. Science of the Total Environment 856, 159171.
https://doi.org/10.1016/j.scit....
39.
M’nassri, S., Dridi, L., Schafer, G., Hachicha, M., Majdoub, R. 2019. Groundwater salinity in a semi-arid region of central-eastern Tunisia: insights from multivariate statistical techniques and geostatistical modelling. Environmental Earth Sciences 78, 288.
https://doi.org/10.1007/s12665....
40.
Mondejar, J.P., Tongco, A.F., 2019. Estimating topsoil texture fractions by digital soil mapping: A response to the long-outdated soil map in the Philippines. Sustainable Environment Research 29, 31.
https://doi.org/10.1186/s42834....
41.
Nasser, F.C., De Mello, D.C., Francelino, M.R., Krause, M.B., Soares, H., Dematte, J., 2024. Mapping desactivated mine areas in the amazon forest impacted by seasonal flooding: Assessing soil-hydrological processes and quality dynamics by remote and geophysical techniques. Remote Sensing Applications: Society and Environment 34, 101148.
https://doi.org/10.1016/j.rsas....
42.
Nelson, D.W., Sommers, L.E., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. 1996. Total carbon, organic carbon and organic matter. Methods Soil Analysis 9, 961–1010.
https://doi.org/10.2136/sssabo....
43.
Nellis, M.D., Briggs, J.M., 1992.Transformed vegetation index for measuring spatial variation in drought impacted biomass on Konza Prairie, Kansas. Transactions of Kansas Academy of Science 1903(95), 93–99.
https://doi.org/10.2307/362802....
44.
Nguy-Robertson, A., Peng, Y., Gitelson, A., Arkebauer, T., Pimstein, A., Herrmann, I., Karnieli, A., Rundquist, D., Bonfil, D., 2014. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agricultural and Forest Meteorology 192-193, 140–148.
https://doi.org/10.1016/j.agrf....
45.
Ozayzici, M.A., Dengiz, O., Saglam, M., Erkoçak, A., Turkmen, F., 2017. Mapping and assessment-based modelling of soil fertility differences in the central and eastern parts of the black sea region using GIS and geostatistical approaches. Arabian Journal of Geosciences 1045, 1–9.
https://doi.org/10.1007/s12517....
46.
Poppiel, R.R., Dematte, J.A., Rosin, N.A., Camps, L.R., Tayebi, M., Bonfatti, B.R., Ayoubi, S., et al. 2021. High-resolution middle eastern soil attributes mapping via open data and cloud computing. Geoderma 385, 114890.
https://doi.org/10.1016/j.geod....
48.
Ray, S.S., Singh, J.P., Das, G., Panigrahy, S., 2004. Use of High resolution remote sensing data for generating site-specific soil management plant. International Society for Photogrammetry and Remote Sensing 35, 127–132.
50.
Rock, B.N., Williams, D.L., Vogelmann, J.E., 1985. Field and airborne spectral characterization of suspected acid deposition damage in red spruce (Picea ribens) from Vermont. In: Proceeding of Sumposium on Machine Processing of Remotely Sensed Data. Wesr Ladayette, Indiana, USA.
51.
Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the great plains with ERTS. In: Third Earth Resources Technology Satellite-1 Symposium. pp. 309–317.
52.
Scudiero, E., Skaggs, T.H., Corwin, D.L., 2014. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Regional 2-3, 82–90.
https://doi.org/10.1016/j.geod....
53.
Soil Survey Staff, 1992. Keys to soil Taxonomy, fifth ed. Pocahontas Press, Blacksburg, VA.
54.
Soil Survey Staff, 1999. Soil Taxonomy. A basic system of soil classification for making and interpreting soil survey. USDA Agriculture Handbook N 436. Washington D.C, USA.
55.
Song, X.D., Rossiter, D.G., Liu, F., Wu, H.Y., Zhao, X.R., Cao, Q., Zhang, G.L., 2020. Can pedotransfer fucntions based on environmental variables improve soil total nutrient mapping at a regional scale? Soil and Tillage Research 202, 104672.
https://doi.org/10.1016/j.stil....
56.
Soares Vieira, A., Do Valle Junior, R.F., Rodrigues, V.S., Silva Quinaia, T., Mendes, R.G., Valera, C.A., Fernandes, L., Pacheco, F., 2023. Estimating water erosion from the brightness index of orbital images: A framework for the prognosis of degraded pastures. Science of the Total Environment 776(1), 146019.
https://doi.org/10.1016/j.scit....
57.
Srisomkiew, S., Kawahigashi, M., Limtong, P., Yuttum, O., 2022. Digital soil assessment of soil fertility for Thai jasmine rice in the Thung Kula Ronghi region, Thailand. Geoderma 409, 115597. DOI: 10.1016/j.geoderma.2021.115597.
58.
Srisomkiew, S., Kawahigashi, M., Limtong, P., 2021. Digital mapping of soil chemical properties with limited data in the Thung Kula Ronghai region, Thailand. Geoderma 389, 114942.
https://doi.org/10.1016/j.geod....
60.
Tiangi, Z., Ye, L., Wang, M., 2024. Remote sensing-based prediction of organic carbon in agricultural and natural soils influenced by salt and sand mining using machine learning. Journal of Environmental Management 352, 120107.
https://doi.org/10.1016/j.jenv....
61.
Tunçay, T., Alaboz, P., Dengiz, O., Baskan, O., 2023. Application of regression kriging and machine learning to estimate soil moisture constants in a semi-arid terrestrial area. Computers and Electronics in Agriculture 212, 108118.
https://doi.org/10.1016/j.comp....
62.
Tunçay, T., Kiliç, S., Dedeoglu, M., Dengiz, O., Baskan, O., Bayramin, I., 2021. Assessing soil fertility index based on remote sensing and gis techniques with field validation in a semiarid agricultural ecosystem. Journal of Arid Environments 190, 104525.
https://doi.org/10.1016/j.jari....
64.
Thaler, E.A., Larsen, I.J., Yu, Q., 2019. A new index for remote sensing of soil organic carbon based solely on visible wavelengths. Soil Science Society of America Journal 83, 1443–1450.
https://doi.org/10.2136/sssaj2....
65.
Tripathi, N.K., Brijesh, K.R.D., 1997. Spatial modelling of soil alkalinity in GIS environment using IRS data. Paper presented at the 18th Asian conference in Remote Sensing.
66.
Wolanin, A., Camps-Valls, G., Gomez-Choval, L., Mateo-Gracia, G., Van der Tol, C., Zhang, Y., Guanter, L., 2019. Estmating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sensing of Environment 225, 441–457.
https://doi.org/10.1016/j.rse.....
67.
Wei, L., Tian, S., Lu, Q., Zhong, Y., Zheng, Y., Lu, Y., Xiao, Z., 2024. Estimating soil organic carbon content of multipe soil horizons in the middle and upper reaches of the Heihe River Basin. Catena 234, 107574.
https://doi.org/10.1016/j.cate...
68.
Wang, H., Yao, L., Huang, B., Hu, W., Qu, M., Zhao, Y., 2019. An integrated approach to exploring soil fertility from the perspectiveof rice (Oryza sativa L.) Yields. Soil and Tillage Research 194, 104322.
https://doi.org/10.1016/j.stil....
69.
Xu, L., Ming, D., Zhang, L., Dong, D., Qong, Y., Yang, J., Zhou, C., 2023. Parcel level staple crop type identification based on newly defined red-edge vegetation indices and ORNN. Computers and Electronics in Agriculture 211, 108012.
https://doi.org/10.1016/j.comp....
70.
Yuan J., Gao, J., Yu, B., Yan, Ch., Ma, Ch., Xu, J., Liu, Y., 2024. Estimating of soil organic matter content based on spectral indices constructed by improved Hapke model. Geoderma 443: 116823.
https://doi.org/10.1016/j.geod....
71.
Yuzugullu, O., Fajraoui, N., Don, A., Liebisch, F., 2024. Satellite-based soil organic carbon mapping on European soils using available datasets and support sampling. Science of Remote Sensing 9, 100118.
https://doi.org/10.1016/j.srs.....
72.
Zhang, X., Xue, J., Chen, S., Zhuo, Z., Wang, Z., Chen, X., Xiao, Y., Shi, Z., 2024. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data. Journal of Integrative Agriculture.
https://doi.org/10.1016/j.jia.....
73.
Zhang, T., Huang, L.M., Yang, R.M., 2024. Evaluation of digital soil mapping projections in soil organic carbon change modelling. Ecological Informatics 79, 102394.
https://doi.org/10.1016/j.ecoi....
74.
Zhang, S., Tian, J., Lu, X., Tian, Q., 2023.Temporal and spatial dynamics distribution of organic carbon content of surface soil coastal wetlands of Yancheng, China from 2000 to 2022 based on Landsat images. Catena 223, 106961.
https://doi.org/10.1016/j.cate....
75.
Zhang, G., Bai, J., Xi, M., Zhao, Q., Lu, Q., Jia, J., 2016. Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set. Ecological indicators 66, 458–466.
https://doi.org/10.1016/j.ecol....
76.
Zhang, J., Cai, J., Xu, D., Wu, B., Chang, H., Zhang, B., Wei, Z., 2024. Soil salinization poses greater effects than soil moisture on field crop growth and yield in arid farming areas with intense irrigation. Journal of Cleaner Production 451, 142007.
https://doi.org/10.1016/j.jcle....
77.
Zhou, T., Geng, Y., Pan, J., Haase, D., Lausch, A., 2020. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Science of the Total Environment 729, 138244.
https://doi.org/10.1016/j.scit....