PL EN
PRACA ORYGINALNA
Długoterminowy wpływ pożaru na rozmieszczenie składników pokarmowych w biomasie brzozy brodawkowatej (Betula pendula Roth)
 
 
Więcej
Ukryj
1
Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences, Polska
 
 
Data nadesłania: 23-02-2022
 
 
Data ostatniej rewizji: 04-05-2022
 
 
Data akceptacji: 10-05-2022
 
 
Data publikacji online: 10-05-2022
 
 
Autor do korespondencji
Beata Rustowska   

Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776, Warsaw, Polska
 
 
Soil Sci. Ann., 2022, 73(2)149943
 
SŁOWA KLUCZOWE
STRESZCZENIE
Celem badań była ocena długoterminowego wpływu pożaru na rozmieszczenie składników pokarmowych w biomasie brzozy brodawkowatej (Betula pendula Roth). Badaniami objęto dwa stanowiska (popożarowe i kontrolne) w tym samym wieku (27 lat), położone na terenie Nadleśnictwa Cierpiszewo (Polska centralna). Stanowiska znajdowały się w tym samym kompleksie gleb rdzawych wykształconych z piasków eolicznych. Próbki gleby i brzozy pobierano w dziesięciu powtórzeniach na stanowisko. Próbki gleby pobierano z głębokości 0–10, 10–20, 20–40 i 20–40 cm za pomocą próbnika rdzeniowego. Z drzew pobrano próbki korzeni drobnych, korzeni grubych, drewna pnia, kory pnia, gałęzi grubych, gałęzi drobnych i liści. Podstawowe właściwości gleby oznaczono stosując standardowe procedury. Ponadto w próbkach gleby i biomasy analizowano ogólną zawartość węgla (C), azotu (N), siarki (S), fosforu (P), potasu (K), wapnia (Ca), magnezu (Mg), żelaza (Fe), manganu (Mn), miedzi (Cu) i cynku (Zn). Gleby były silnie kwaśne i ubogie w badane pierwiastki. Zawartość składników pokarmowych w biomasie była silnie zróżnicowana w poszczególnych organach. Najbardziej zasobne w składniki pokarmowe były liście, następnie drobne korzenie i drobne gałęzie oraz kora. Najmniejszą zawartość składników pokarmowych stwierdzono w drewnie pnia. W przypadku niektórych pierwiastków stwierdzono statystycznie istotne różnice pomiędzy stanowiskiem popożarowym a kontrolnym. Na stanowisku po pożarze odnotowano większe koncentracje P, K i Zn w większości frakcji biomasy, a także Mg i Mn w korzeniach i drewnie pni. Zawartość N i Ca była zwykle wyższa na stanowisku kontrolnym. Wpływ pożaru na akumulację Fe i Cu był zróżnicowany w poszczególnych organach. Nie został on potwierdzony w przypadku S. Generalnie brzoza wykazywała największą intensywność bioakumulacji w odniesieniu do N, a najmniejszą w odniesieniu do Fe. Spośród wszystkich badanych składników pokarmowych współczynniki bioakumulacji były zwykle najwyższe w liściach, a najniższe w drewnie pnia. Można stwierdzić, że pożar jest ważnym czynnikiem wpływającym na gospodarkę składnikami pokarmowymi na stanowiskach brzozy brodawkowatej, nawet kilkadziesiąt lat po jego wystąpieniu.
 
REFERENCJE (82)
1.
Abney, R.B, Sanderman, J., Johnson, D., Fogel, M.L., Berhe, A.A., 2017. Post-wildfire Erosion in Mountainous Terrain Leads to Rapid and Major Redistribution of Soil Organic Carbon. Frontiers in Earth Science 5, 99. https://doi.org/10.3389/feart.....
 
2.
Adams, M.A., 2013. Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future. Forest Ecology and Management 294, 250–261. https://doi.org/10.1016/j.fore....
 
3.
Almendros, G., Gonzales-Vila, F.J., Martin, F., 1990. Fire induced transformation of soil organic matter from an oak forest on experimental approach to the effects of the fire on humic substances. Soil Science 149(3), 158–168. http://dx.doi.org/10.1097/0001....
 
4.
Augusto, L., Bonnaud, P., Ranger, J., 1998. Impact of tree species on forest soil acidification. Forest Ecology and Management 105, 67–78. https://doi.org/10.1016/s0378-....
 
5.
Barrow, N.J., 1984. Modelling the effects of pH on phosphate sorption by soils. Journal of Soil Science 35, 283–297. https://doi.org/10.1111/j.1365....
 
6.
Brożek, S., Zwydak M., 2010. Atlas gleb leśnych Polski. Centrum Informacyjne Lasów Państwowych, Warszawa, ss. 466. (in Polish with English summary).
 
7.
Butkus, D., Baltrėnaitė, E., 2007. Transport of heavy metals from soil to Pinus sylvestris L. and Betula pendula trees. Ekologija 53(1), 29–36.
 
8.
Campos, I., Abrantes, N., Keizer, J. J., Vale, C., Pereira, P., 2016. Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of The Total Environment 572, 1363–1376. https://doi.org/10.1016/j.scit....
 
9.
Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10. https://doi.org/10.1007/s00442....
 
10.
Chungu, D., Ng’andwe, P., Mubanga, H., Chileshe, F., 2020. Fire alters the availability of soil nutrients and accelerates growth of Eucalyptus grandis in Zambia. Journal of Forestry Research 31, 1637–1645. https://doi.org/10.1007/s11676....
 
11.
Dadea, C., Casagrande, S., La Rocca, N., Mimmo, T., Russo, A., Zerbe, S., 2016. Heavy metal accumulation in urban soils and deciduous trees in the city of Bolzano, N Italy. Waldökologie, Landschaftsforschung und Naturschutz – Forest Ecology, Landscape Research and Nature Conservation 15, 35–42.
 
12.
DeBano, L.F., Conrad, C.E., 1978. The Effect of Fire on Nutrients in a Chaparral Ecosystem. Ecology 59(3), 489–497. https://doi.org/10.2307/193657....
 
13.
DeBano, L.F., 1991. The effect of fire on soil properties. In: Harvey, A.E., Neuenschwander, L.F. (Eds.), Proceedings-management and productivity of western-montane forest soils. General Technical Report, Ogden, 151–156.
 
14.
DeBano, L.F., Neary, D.G., Ffolliott, P.F., 1998. Fire’s effect on ecosystems. John Wiley and Sons, New York, 1–352.
 
15.
DeBano, L.F., 2000. Water repellency in soils: a historical overview. Journal of Hydrology 231–232, 4–32. https://doi.org/10.1016/S0022-....
 
16.
De Marco, A., Gentile, A. E., Arena, C., De Santo, A.V., 2005. Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy. International Journal of Wildland Fire 14, 365–377.
 
17.
Desai, M., Haigh, M., Walkington, H., 2019. Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land. Science of the Total Environment 656, 670–680. https://doi.org/10.1016/j.scit....
 
18.
Dmuchowski, W., Baczewska, A.H., Gozdowski, D., 2012. Silver birch (Betula pendula Roth) as zinc hyperaccumulator. In: Nriagu J., Pacyna J., Szefer P., Markert B., Wuenschmann S., Namieśnik J. (Eds.), Heavy Metals in the Environment. Maralte BV, Voorschoten, The Netherlands, 19–25.
 
19.
Dmuchowski, W., Gozdowski, D., Brągoszewska, P., Baczewska, A.H., Suwara, I., 2014. Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecological Engineering 71, 32–35. https://doi.org/10.1016/j.ecol....
 
20.
Dziadowiec, H., 2010. Wpływ pożaru lasu na właściwości gleb leśnych. [In:] Sewerniak, P., Gonet, S.S. (Eds.), Środowiskowe skutki pożaru lasu. PTSH, Wrocław, 7–26. (in Polish with English summary).
 
21.
Ernst W.H.O., Nelissen H.J.M., 2008. Bleeding sap and leaves of silver birch (Betula pendula) as bioindicators of metal contaminated soils. International Journal of Environment and Pollution 33, 160–172. https://doi.org/10.1504/IJEP.2....
 
22.
Fernandez I., Cabaneiro A., Corballas T., 2001. Thermal resistance to high temperatures of different organic fractions from soils under pine forests. Geoderma 104, 281–298. https://doi.org/10.1016/S0016-....
 
23.
Finér, L., 1989. Biomass and nutrient cycle in fertilized and unfertilized pine, mixed birch and pine and spruce stands on a drained mire. Acta Forestalia Fennica 208, 1–63. https://doi.org/10.14214/aff.7....
 
24.
Fisher, R.F., Binkley, D., 2000. Fire effects. [In:] Fisher, R.F., Binkley, D., Pritchett, W.L. (Eds.), Ecology and Management of Forest Soils. John Wiley and Sons, New York, 241–262.
 
25.
Gallagher, F.J., Pechmann, I., Bogden, J.D., Grabosky, J., Weis, P., 2008. Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environmental Pollution 153, 351–361. https://doi.org/10.1016/j.envp....
 
26.
Gawęda, T., Małek, S., Zasada, M., Jagodziński, A. 2014. Allocation of elements in a chronosequence of silver birch afforested on former agricultural lands. Drewno 57, 107–117. https://doi.org/10.12841/wood.....
 
27.
Ge, X., Tian, Y., Tang, L., 2015. Nutrient distribution indicated whole-tree harvesting as a possible factor restricting the sustainable productivity of a poplar plantation system in China. PLoS ONE 10, 1–14. https://doi.org/10.1371/journa....
 
28.
Gomes, M.A. da C., Hauser-Davis, R.A., de Souza, A.N., Vitória, A.P., 2016. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety 134, 133–147. https://doi.org/10.1016/j.ecoe....
 
29.
Gonet S.S., 2010. Wpływ pożaru lasu na właściwości materii organicznej gleb. [In:] Sewerniak P., Gonet S.S. (Eds.), Środowiskowe skutki pożaru lasu. PTSH, Wrocław, 51–82. (in Polish with English summary).
 
30.
Grier, C.C., 1975. Wildfire effects on nutrient distribution and leaching in a coniferous ecosystem. Canadian Journal of Forest Research 5(4), 599–607. https://doi.org/10.1139/x75-08....
 
31.
Grobelak, A., 2016. Organic Soil Amendments in the Phytoremediation Process. [In:] Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman L. (Eds.), Phytoremediation: Management of Environmental Contaminants Vol. 4. Springer, Cham, Switzerland, 21–39.
 
32.
Han, C.-L., Sun, Z.-X., Shao, S., Wang, Q.-B., Libohova, Z., Owens, P.R., 2021. Changes of soil organic carbon after wildfire in a boreal forest, northeast China. Agronomy 11, 1925. https://doi.org/10.3390/agrono....
 
33.
Heydari, M., Salehi, A., Mahdavi, A., Adibnejad, M., 2012. Effects of different fire severity levels on soil chemical and physical properties in Zagros forests of western Iran. Folia Forestalia Polonica 54(4), 241–250.
 
34.
Hunt, H.W., Reuss, D.E., Elliott, E.T., 1999. Correcting estimates of root chemical composition for soil contamination. Ecology 80(2), 702–707. https://doi.org/10.2307/176645.
 
35.
Hytönen, J., Saramäki, J., Niemistö, P., 2014. Growth, stem quality and nutritional status of Betula pendula and Betula pubescens in pure stands and mixtures. Scandinavian Journal of Forest Research 29(1), 1–11, https://doi.org/10.1080/028275....
 
36.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015, International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report No. 106. FAO, Rome.
 
37.
Johnson, Ε.Α., Miyanishi, Κ., 2001. Forest Fires: Behavior and Ecological Effects. Academic Press, New York, 1–594.
 
38.
Jonczak, J., 2011. Struktura, dynamika i właściwości opadu roślinnego w 110-letnim drzewostanie bukowym z domieszką sosny i świerka, Sylwan 155(11), 760–768. (in Polish with English summary).
 
39.
Jonczak, J., Olejniczak M., Parzych A., Sobisz Z. 2016. Dynamics, structure and chemistry of litterfall in headwater riparian forest on the area of Middle Pomerania. Journal of Elementology 21(2), 381–392. https://doi.org/10.5601/jelem.....
 
40.
Jonczak, J., Olejarski, I., Janek, M., 2019. Phosphorus fractionation in forest Brunic Arenosols of post−fire areas. Sylwan 163(5), 396–406.https://doi.org/10.26202/sylwa....
 
41.
Jonczak, J., Sut-Lohmann M., Polláková N., Parzych A., Šimanský V., Donovan S., 2021. Bioaccumulation of potentially toxic elements by the needles of eleven pine species in low polluted area. Water, Air and Soil Pollution 232, 1–16. https://doi.org/10.1007/s11270....
 
42.
Kabata-Pendias, A., Pendias, H., 1999. Biogeochemia pierwiastków śladowych. Wyd. Nauk. PWN, Warszawa, ss. 398. (in Polish).
 
43.
Kalembasa, D., Becher, M., 2006. Węgiel i azot w wydzielonych frakcjach materii organicznej leśnych gleb rdzawych i bielicowych Niziny Południowopodlaskiej. Roczniki Gleboznawcze – Soil Science Annual 57(3/4), 44–54. (in Polish with English summary).
 
44.
Khanna, P.K., Raison R.J., Falkiner R.A., 1994. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. Forest Ecology and Management 66, 107–125. https://doi.org/10.1016/0378-1....
 
45.
Kikamägi, K., Ots, K., Kuznetsova, T., 2013. Effect of wood ash on the biomass production and nutrient status of young silver birch (Betula pendula Roth) trees on cutaway peatlands in Estonia. Ecological Engineering 58, 17–25. https://doi.org/10.1016/j.ecol....
 
46.
Knoepp, J.D., Vose, J.M., Swank, W.T., 2008. Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests. International Journal of Environmental Studies 65(3), 389–408.
 
47.
Kutiel, P., Naveh, Z., 1987. The effect of fire on nutrients in a pine forest soil. Plant Soil 104, 269–274. https://doi.org/10.1007/BF0237....
 
48.
Kutiel, P., Shaviv, A., 1992. Effects of soil type, plant composition and leaching on soil nutrients following a simulated forest fire. Forest Ecology and Management 53, 329–343. https://doi.org/10.1016/0378-1....
 
49.
Kutiel, P. 1997. Spatial and temporal heterogeneity of species diversity in a Mediterranean ecosystem following fire. International Journal of Wildland Fire 7(4), 307-315. https://doi.org/10.1071/WF9970....
 
50.
Laclau, J.P., Sama-Poumba, W., Nzila, J. de D., Bouillet, J.P., Ranger, J., 2002. Biomass and nutrient dynamics in a littoral savanna subjected to annual fires in Congo. Acta Oecologica 23(1), 41–50. https://doi.org/10.1016/s1146-....
 
51.
Lobert, J.M., Warnatz, J., 1993. Emissions from the Combustion Process in Vegetation. [In:] Crutzen, P.J., Goldammer, J.G. (Eds.), Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires. John Wiley and Sons, New York, 15–3.
 
52.
Maiti, S. K., Jaiswal, S., 2008. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environmental Monitoring and Assessment 136(1–3), 355–370. https://doi.org/10.1007/s10661....
 
53.
Mleczek, M., Goliński, P., Krzesłowska, M., Gąsecka, M., Magdziak, Z., Rutkowski, P., Budzyńska, S., Waliszewska, B., Kozubik, T., Karolewski, Z., Niedzielski, P., 2017. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environmental Science and Pollution Research International 24, 22183–22195. https://doi.org/10.1007/s11356....
 
54.
Novák, J., Dušek, D., Kacálek, D., Slodičák, M., 2017. Nutrient content in silver birch biomass on nutrient-poor, gleyic sites. Zpravy Lesnickeho Vyzkumu 62(3), 135–141.
 
55.
Orgeas, J., Andersen, A.N., 2001. Fire and biodiversity: Responses of grass-layer beetles to experimental fire regimes in an Australian tropical savanna. Journal of Applied Ecology 38, 49– 62. https://doi.org/10.1046/j.1365....
 
56.
Palviainen, M., Finér, L., 2011. Estimation of nutrient removals in stem-only and whole-tree harvesting of Scots pine, Norway spruce, and birch stands with generalized nutrient equations. European Journal of Forest Research 131(4), 945–964. https://doi.org/10.1007/s10342....
 
57.
Parzych, A., Sobisz, Z., Cymer, M., 2016. Preliminary research of heavy metals content by aquatic macrophytes taken from surface water (northern Poland). Desalination and Water Treatment 57(3), 1453–1463. https://doi.org/10.1080/194439....
 
58.
Parzych A., Jonczak J., Sobisz Z., 2017. Bioaccumulation of macronutrients in the herbaceous plants of mid-forest spring niches. Baltic Forestry 23(2), 384–393.
 
59.
Parzych A., Jonczak J., 2018. Comparison of nitrogen and phosphorus accumulation in plants associated with streams and peatbogs in mid-forest headwater ecosystems. Journal of Elementology 23(2), 459–469. https://doi.org/10.5601/jelem.....
 
60.
Pasieczna A., 2003. Atlas zanieczyszczeń gleb miejskich w Polsce. Państwowy Instytut Geologiczny, Warszawa, pp. 83. (in Polish).
 
61.
Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Arcenegui, V., Zavala, L., 2015. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development 26, 180–192. https://doi.org/10.1002/ldr.21....
 
62.
Pospieszyńska, A., Przybylak, R., 2013. Ekstremalne warunki klimatyczne w Toruniu w okresie pomiarów instrumentalnych, 1871–2010. [In:] Głowiński, T., Kościk, E., (Eds.) Od powietrza, głodu, ognia i wojny... Klęski elementarne na przestrzeni wieków. Wrocławskie Spotkania z Historią Gospodarczą, Wrocław, 187–196. (in Polish).
 
63.
PTG., 2009. Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008, Roczniki Gleboznawcze – Soil Science Annual 60(2), 5–17.
 
64.
Pyne, S., 2010. The Ecology of Fire. Nature Education Knowledge 3(10), 30.
 
65.
Raison, R.J., Khanna, P.K., Jacobsen, K.L.S., Romanya, J., Serrasolses, I., 2009. Effects of fire on forest nutrient cycles. [In:] Cerda, A., Robichaud, P.R. (Eds.), Fire effects on soils and restoration strategies. Science Publishers Incorporated: Enfield, New Hampshire, 225–256. https://doi.org/10.1201/978143....
 
66.
Reinhart, K.O., Dangi, S.R., Vermeire, L.T., 2016. The effect of fire intensity, nutrients, soil microbes, and spatial distance on grassland productivity. Plant Soil 409, 203–216. https://doi.org/10.1007/s11104....
 
67.
Saharjo, B.H., Munoz, C.P., 2005. Controlled burning in peatlands owned by small farmers: a case study in land preparation. Wetlands Ecology and Management 13, 105–110. https://doi.org/10.1007/s11273....
 
68.
Schaller, J., Tischer, A., Struyf, E., Bremer, M., Belmonte, D.U., Potthast, K., 2015. Fire enhances phosphorus availability in topsoils depending on binding properties. Ecology 96(6), 1598–1606. https://doi.org/10.1890/14-131....
 
69.
Schoch, P., Binkley, D., 1986. Prescribed burning increased nitrogen availability in a mature loblolly pine stand. Forest Ecology and Management 14, 13–22. https://doi.org/10.1016/0378-1....
 
70.
Shakesby, R., Coelho, C., Ferreira, A., Terry, J., and Walsh, R., 1993. Wildfire impacts on soil-erosion and hydrology in wet Mediterranean forest, Portugal. International Journal of Wildland Fire 3, 95–110. https://doi.org/10.1071/WF9930....
 
71.
Sharma, P., Pandey, S., 2014. Status of Phytoremediation in World Scenario. International Journal of Environmental Bioremediation and Biodegradation 2, no. 4, 178–191. https://doi.org/10.12691/ijebb....
 
72.
Stankov Jovanovic, V.P., Ilic, M.D., Markovic, M.S., Mitic, V.D., Nikolic, S.D., Stojanovic, G.S., 2011. Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Serbia). Chemosphere, 84(11), 1584–1591. https://doi.org/10.1016/j.chem....
 
73.
Supuka, J., Feriancová, L., Bihuňová, M., 2008. Leaf impact trends of silver birch (Betula pendula Roth.) by allochtonous elements at Nitra town urban Vegetation. Thaiszia Journal of Botany 18, 37–49.
 
74.
Sut-Lohmann, M., Jonczak, J., Raab, T., 2020a. Phytofiltration of chosen metals by aquarium liverwort (Monosoleum tenerum). Ecotoxicology and Environmental Safety 188, 109844. https://doi.org/10.1016/j.ecoe....
 
75.
Sut-Lohmann, M., Jonczak, J., Parzych, A., Šimanský, V., Polláková, N., Raab, T., 2020b. Accumulation of airborne potentially toxic elements in Pinus sylvestris L. bark collected in three Central European medium-sized cities. Ecotoxicology and Environmental Safety 200, 110758. https://doi.org/10.1016/j.ecoe....
 
76.
Syaufina, L., Darojat, S.N., Sitanggang, I.S., Apriliantono., 2018. Forest fire as a threat for biodiversity and urban pollution. IOP Conference Series: Earth and Environmental Science 203, 012015. https://doi.org/10.1088/1755-1....
 
77.
Szwalec, A., Lasota, A., Kędzior, R., Mundała, P., 2018. Variation in heavy metal content in plants growing on a zinc and lead tailings dump. Applied Ecology and Environmental Research 16(4), 5081–5094. https://doi.org/10.15666/aeer/....
 
78.
Thomas, A.D., Walsh, R.P.D., Shakesby, R.A., 1999. Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of Northern Portugal. Catena 36(4), 283–302.
 
79.
Torres-Rojas, D., Hestrin, R., Solomon, D., Gillespie, A. W., Dynes, J. J., Regier, T. Z., Lehmann, J., 2020. Nitrogen speciation and transformations in fire-derived organic matter. Geochimica et Cosmochimica Acta 276, 170–185. http://doi.org/10.1016/j.gca.2....
 
80.
Verma, S., Jayakumar, S., 2012. Impact of forest fire on physical, chemical and biological properties of soil: A review. Proceedings of the International Academy of Ecology and Environmental Sciences 2(3), 168–176.
 
81.
Wisłocka, M., Krawczyk, J., Klink, A., Morrison, L., 2006. Bioaccumulation of Heavy Metals by Selected Plant Species from Uranium Mining Dumps in the Sudety Mts., Poland. Polish Journal of Environmental Studies 15(5), 811–818.
 
82.
Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., Zhang, G., 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution 159(1), 84–91. https://doi.org/10.1016/j.envp....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top