Mapping carbon dioxide (CO2) emissions from peat subsidence using carbon parameters and InSAR observations in south Kalimantan, Indonesia
Department of Agroecotechnology, Universitas Lambung Mangkurat, Indonesia
Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Research Center of Remote Sensing, National Research and Innovation Agency, Indonesia
Aeolus Instrument Performance Engineer, European Space Agency, Netherlands
Data nadesłania: 19-10-2022
Data ostatniej rewizji: 13-05-2023
Data akceptacji: 15-07-2023
Data publikacji online: 15-07-2023
Data publikacji: 08-09-2023
Autor do korespondencji
Noorlaila Hayati   

Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember, Jl. Raya ITS, 60111, Surabaya, Indonesia
Soil Sci. Ann., 2023, 74(2)169656
Peatlands are recognized as one of the largest terrestrial carbon sinks and are pivotal in efforts to mitigate climate change. Given this, Indonesia has committed to managing its peatlands, which have been subjected to drainage, deforestation, fires, and conversion for development. As of 2015, the Center for Agricultural Land Resources has mapped 107,344 ha of peatlands in South Kalimantan Province. However, in 2019, forest fires destroyed 2,400 ha of land, leading to the decomposition of surface peat areas, land subsidence, and the release of carbon into the atmosphere as CO2. This study aimed to quantify the widespread loss of peat carbon using the PS-InSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) technique. Specifically, 66 Sentinel 1 SAR images of SLC were used to map subsidence in the peatland area between January 2019 and January 2021. The carbon content and bulk density of peatland were then quantified to estimate CO2 emission. The results obtained through the PS-InSAR technique showed that the highest level of peat subsidence was at -50 mm year-1 in the Landasan Ulin Sub-district of Banjarbaru Regency. Furthermore, subsidence was identified in 6,920.5 ha of peatland in the study area. Subsidence, peat area, and carbon content data from SAR images, optical images, and peat soils were gathered through field surveys and websites (GSOCMap and Zenodo) to estimate CO2 emission. The estimated CO2 emissions based on in-situ and website data were the highest at 0.29 t C ha-1 year-1 and 0.04 t C ha-1 year-1 in Beruntung Baru Sub-district, Banjar Regency, and Bumi Makmur Sub-district, Tanah Laut Regency, respectively.
Agus, F., Hairiah, K., Mulyani, A., World Agroforestry Centre (ICRAF), 2011. Pengukuran cadangan karbon tanah gambut. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor, Indonesia, Universitas Brawijaya, Malang, Indonesia.
Annisa, W., Nursyamsi, D. 2017. Potensi Emisi Karbon di Lahan Gambut Tropis.
Alshammari, L, Large, D.J., Boyd, D.S., Sowter, A., Anderson, R., Andersen, R., Marsh, S., 2018. Long-Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland. Remote Sensing 10(7), 1103.
Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R. E., Suratman, Husnain. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 402, 115235.
Basuki, I., Budiman, A., Netzer, M., Safitri, R., Maulana, R., Nusirhan, T. S. E., Syamsir, & Bernal, B. 2021. Dynamic of groundwater table, peat subsidence and carbon emission impacted from deforestation in tropical peatland, Riau, Indonesia. IOP Conference Series: Earth and Environmental Science 648(1), 12029.
Susanto, D., Sanusi, Widyanti, R., 2020. Implementasi Kebijakan Restorasi Gambut di Kalimantan Selatan dari Persfektif Komunikasi Kebijakan (Studi Kasus di Kecamatan Candi Laras Utara Kabupaten Tapin). Doctoral dissertation, Universitas Islam Kalimantan MAB.
Dahlal, B., 2011. The use of interferometric spaceborne radar and GIS to measure ground subsidence in peat soils in Indonesia. University of Leicester. Thesis.
Dariah, A., Susanti, E., Agus, F., 2011. Simpanan karbon dan emisi CO2 di lahan gambut. Pengelolaan lahan gambut berkelanjutan. Balai Penelitian Tanah. p. 56-72.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T., Page, S. E., Bocko, Y. E., Ifo, S. A. 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542(7639), 86-90.
Dyatmika, H. S., Arief, R., Sudiana, D., Ali, S., Maulana, R., 2018. Modifikasi Digital Elevation Model (DEM) Citra Resolusi Tinggi Menggunakan Fusi Interferometri SAR dan StereoSAR Berbasis Faktor Pembobotan. 15(2), 10.
Directorate of Peatland Degradation Control Republic of Indonesia. 2021. Corrective Action on Peatland Protection and Management in Indonesia-Toward Sustainable Peatland Management 2019-2020. Ministry of Environment and Forestry Republic of Indonesia. Retrieved from
Hafni, D., Syaufina, L., Puspaningsih, N., Prasasti, I., 2018. Estimation of carbon emission from peatland fires using Landsat-8 OLI imagery in Siak District, Riau Province. IOP Conf. Ser.: Earth and Environmental Science 149, 012040.
Hayati, N., Sari, N., Arief, R., Uzzulfa, M. A., 2022. Parameters To Estimate CO2 Emission in Peatland Area Based on Carbon Content and Subsidence Rate from Sar Interferometry, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 277–284,
Hengl, T., 2018. Soil bulk density (fine earth) 10 x kg / m-cubic at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution [Map].
Hooper, A. 2008, A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters 35, L16302, doi:10.1029/2008GL034654.
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., Jauhiainen, J., 2009. Current and future CO2 emissions from drained peatlands in Southeast Asia [Preprint]. Biogeochemistry: Greenhouse Gases.
Hoyt, A.M., Chaussard, E., Seppalainen, S.S. et al. Widespread subsidence and carbon emissions across Southeast Asian peatlands. 2020. Nature Geoscience 13, 435–440.
Kiely, L., Spracklen, D. V, Arnold, S. R., Papargyropoulou, E., Conibear, L., Wiedinmyer, C., Knote, C., Adrianto, H. A., 2021. Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications 12(1), 7044.
Nuthammachot, N., Phairuang, W., Stratoulias, D., 2019. Estimation of Carbon Emission in The Ex-Mega Rice Project, Indonesia Based on SAR Satellite Images. Applied Ecology and Environmental Research 17(2), 2489–2499.
Othman, H. A. S. N. O. L., Mohammed, A. T., Darus, F. M., Harun, M. H., Zambri, M. P., 2011. Best management practices for oil palm cultivation on peat: ground water-table maintenance in relation to peat subsidence and estimation of CO2 emissions at Sessang, Sarawak. Journal of Oil Palm Research 23(2), 1078-1086.
Page, S., Siegert, F., Rieley, J., Boehm, H., Jaya, A., Limin, S., 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65.
Page, S. E., Rieley, J. O., Banks, C. J. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17(2), 798-818.
Putra, A., Sutikno, S., Rinaldi, 2017. Identifikasi Lahan Gambut Menggunakan Citra Satelit Landsat 8 OLI TIRS Berbasis Sistem Informasi Geografis (SIG) Studi Kasus Pulau Tebing Tinggi. 4(2), 11. Diss. Riau University.
Prasetyo, Y., Subiyanto, S., 2014. Studi Penurunan Muka Tanah (Land Subsidence) Menggunakan Metode Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) di Kawasan Kota Cimahi—Jawa Barat. Teknik 35(2), 78–85.
Regan, S., Flynn, R., Gill, L., Naughton, O., Johnston, P. 2019. Impacts of groundwater drainage on peatland subsidence and its ecological implications on an Atlantic raised bog. Water Resources Research 55, 6153–6168.
Saputra, E., 2019. Beyond fires and deforestation: Tackling land subsidence in peatland areas, a case study from Riau, Indonesia. Land 8(5), 76.
Umarhadi, D. A., Avtar, R., Widyatmanti, W., Johnson, B. A., Yunus, A. P., Khedher, K. M., Singh, G., 2021. Use of multifrequency (C‐band and L‐band) SAR data to monitor peat subsidence based on time‐series SBAS InSAR technique. Land Degradation and Development 32(16), 4779-4794.
Vicharnakorn P, Shrestha RP, Nagai M, Salam AP, Kiratiprayoon S. Carbon Stock Assessment Using Remote Sensing and Forest Inventory Data in Savannakhet, Lao PDR. 2014. Remote Sensing 6(6), 5452-5479.
Waqar, M. M., Sukmawati, R., Ji, Y., Sri Sumantyo, J.T., 2020. Tropical PeatLand Forest Biomass Estimation Using Polarimetric Parameters Extracted from RadarSAT-2 Images. Land 9, 193.
Wijedasa, L. S., Sloan, S., Michelakis, D. G., Clements, G. R., 2012. Overcoming Limitations with Landsat Imagery for Mapping of Peat Swamp Forests in Sundaland. 2012. Remote Sensing 4(9), 2595–2618.
Wosten, J., Ismail, A., Van Wijk, A., 1997. Peat subsidence and its practical implications: A case study in Malaysia. Geoderma 78(1), 25-36.
Wosten, J., Ritzema, H., 2001. Land and water management options for peatland development in Sarawak, Malaysia. International Peat Journal, 59–66.
Zhou, Z., Li, Z., Waldron, S., Tanaka, A., 2016. Monitoring peat subsidence and carbon emission in Indonesia peatlands using InSAR time series. 2016. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 6797–6798.
Zhou, Z., Li, Z., Waldron, S., Tanaka, A., 2019. InSAR time series analysis of L-band data for understanding tropical peatland degradation and restoration. Remote Sensing 11(21), 2592.
Journals System - logo
Scroll to top