PL EN
PRACA ORYGINALNA
Neural networks for the prediction of soil water retention in the upper Cheliff watershed, Algeria
 
Więcej
Ukryj
1
Soil Science Department, Higher, 1 National Agronomic School, (ENSA-ES16200), BP 16200 El Harrach, Algeria;, Algeria
 
2
Faculty of Natural and Life Science, University Center of Tipaza,, Algeria
 
3
1Soil Science Department, , Higher National Agronomic School,, Algeria
 
4
Mechatronics Laboratory, Université Ferhat Abbas, Sétif, Algérie, Algeria
 
 
Data nadesłania: 09-11-2024
 
 
Data ostatniej rewizji: 01-01-2025
 
 
Data akceptacji: 25-04-2025
 
 
Data publikacji online: 25-04-2025
 
 
Data publikacji: 25-04-2025
 
 
Autor do korespondencji
Samia Zemouri   

Soil Science Department, Higher, 1 National Agronomic School, (ENSA-ES16200), BP 16200 El Harrach, Algeria;, Harrach, Algeria;, BP 16200, El Harrach, Algeria
 
 
Soil Sci. Ann., 2025, 76(1)204387
 
SŁOWA KLUCZOWE
STRESZCZENIE
A comprehensive understanding of the water retention properties of soils is imperative for effectively managing these resources and addressing the prevailing paucity of soil data. In recent years, significant attention has been directed towards predicting soil retention properties within the soil physics community. Due to the challenges associated with direct measurement, many researchers have sought to predict this capacity using soil properties that are more readily quantifiable. In this context, the present work aims to find an approach that can contribute to the estimation of water retention and consequently improve the management of water resources, which are in deficit in the inputs. The methodology employed in this study is a modelling-based approach, utilising the method of Artificial Neural Networks (ANN) of the Multilayer Perceptron (MLP) type, which is applied to a selection of soils from the Upper Cheliff catchment area, located in the northwestern region of Algeria. The retention of these soils is predicted using a neural model, and the optimal network architecture is identified through the combination of predictive parameters. The analysis demonstrates the significant learning and prediction capacity of neural networks in relation to retention following textural stratification. However, the ANN model that showed the most remarkable efficacy was established for the clay loam soils at the potential level of -1600 kPa. This model incorporated clay, organic matter, and fine silts, which were identified as the most informative.
REFERENCJE (51)
1.
Al Majou, H., Kaba, R., Almesber, W., Bruand, A., 2016. Validité de l’estimation des propriétés de rétention en eau de sols syriens à partir de fonctions et classes de pédotransfert développées pour des sols français. Etude et Gestion des Sols 23, 112–123.
 
2.
Ameur Zaimeche, O., 2014. Modélisation et reconstitution des facies non carottés à l’aide des méthodes statistiques multi variées du réservoir trias argileux gréseux inferieur (tagi) application au champ de Sif Fatima Bassin de - Berkine - Mémoire Magister, université Kasdi Marbeh, Ouargla 160 pages.
 
3.
A.N.R.H., 2003. Des sols d’Algérie 1963–2003 Doc. ANRH, direction de la pédologie, Alger.
 
4.
Arunkumar, R., Jothiprakash, V., 2013. Reservoir evaporation prediction using data driven techniques. Journal of Hydrologic Engineering 18(1), 40–49. https://doi.org/10.1061/(ASCE)....
 
5.
Ben Hassine, H., Ben Salem, M., Bonin, G., Braudeau, E., Zidi, C., 2003. Réserve utile des sols du Nord-Ouest Tunisien : Évolution sous culture. Étude et Gestion des Sols 10(1), 19–33.
 
6.
Benatiallah, D., Benatiallah, A., Bouchouicha, K., Nasri, B., 2020. Prediction du rayonnement solaire horaire en utilisant les réseaux de neurone artificiel, Algerian Journal of Environmental Science and Technology 6(1), 1236 –1245.
 
7.
Bigorre, F., 2000. Influence de la pédogenèse et de l’usage des sols sur leurs propriétés physiques. Mécanismes d’évolution et éléments de prévision. Thèse de doctorat : Université Henri Poincaré Nancy I (France).
 
8.
Boulaine, J., 1957. Étude des sols des plaines du Chéliff, Thèse d’Etat de l’Université d’Alger. Ministère de l’Algérie, direction de l’hydraulique et de l’équipement rural, 582 p.
 
9.
Bouriel, S., Maddouri, S., Hamrouni, K., 2005. Un Système neuronal pour la reconnaissance de mots arabes manuscrits”, 3rd International Conference: Sciences of Electronic, Technologies of Information and Télécommunications (SETIT), Tunisia.
 
10.
Bruand, A., Duval, O., Gaillard, H., Darthout, R., Jamagne, M., 1996. Variabilité des propriétés de rétention en eau des sols: importance de la densité apparente. Etude et Gestion des Sols 3(1), 27–40.
 
11.
Bruand, A., Fernandez, P., Duval, O., Quentin, P., Nicoullaud , B., 2002. Estimation des propriétés de rétention en eau des sols, Utilisation de classes de pédotransfert après stratifications texturale et texturo-structurale. Etude et Gestion des Sols, Etude et Gestion des Sols 9, 105–126.
 
12.
Bruand, A., Duval, O., Cousin, I., 2004. Estimation des propriétés de rétention en eau des sols à partir de la base de données SOLHYDRO : une première proposition combinant le type d’horizon, sa texture et sa densité apparente. Étud. Gestion Sols 11(3), 323–334.
 
13.
Bruton, J.M., Clendon, R.W., Hoogenboom, G., 2000. Estimating daily pan evaporation with artificial neural networks. Trans ASAE 43(2), 491–496.
 
14.
Chokmani, K., Ouarda, Taha B.M.J., Hamilton., S., Hosni Ghedira., S., Gingras, H., 2008. Comparison of ice-affected stream flow estimates computed using artificial neural networks and multiple regression techniques, Journal of Hydrology 349(3–4), 383–396. https://doi.org/10.1016/j.jhyd....
 
15.
Coulibaly, P., Anctil, F., Bobée, B., 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 230, 244 –257. https://doi.org/10.1016/S0022-....
 
16.
Corsini, M.M., 2005. Introduction aux réseaux de neurones Université Victor Segalen France.
 
17.
Emerson, W., 1995. Water-retention, organic-C and soil texture. Soil Research 33, 241–251 https://doi.org/10.1071/SR9950....
 
18.
Dridi, B., Zemouri, S., 2012. Fonctions de pédotransfert pour les vertisols de la plaine de la Mitidja (Algérie) : recherche de paramètres les plus pertinents pour la rétention en eau, Biotechnol. Agron. Soc. Environ 16(2), 193–201.
 
19.
Douaoui, A., Hartani, T., Lakehal, M., 2006. La salinisation dans la plaine du Bas-Cheliff: acquis et perspectives, Economies d’eau en Systemes d’irrigation au Maghreb. Deuxième atelier regional du projet SIRMA.
 
20.
Duchaufour, P., 1995. Pédologie : sol, végétation, environnement, ed Masson, 4ème édition, 324p.
 
21.
Eden, M., Gerke, H., Houot, S., 2017. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review. Agronomy for Sustainable Development 37, 11. https://doi.org/10.1007/s13593....
 
22.
Emerson, W., 1995. Water retention, organic-C, and soil texture. Soil Research 33, 241–251.
 
23.
Guven, A., Kisi, O., 2011. Daily pan evaporation modelling using linear genetic programming technique. Irrigation Science 29(2), 135–145.
 
24.
Hudson, B., 1994. Soil organic matter and available water capacity. Journal of Soil and Water Conservation 49(2), 189–194.
 
25.
Kharroubi, O., Blanpain, O., Masson, M., Lallahem, S., 2016. Application du réseau des neurones artificiels à la prévision des débits horaires : Cas du bassin versant de l’Eure, France, Hydrological Sciences Journal 61(3), 541–550, https://doi.org/10.1080/026266....
 
26.
Kim, S., Kim, H.S., 2008. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. Journal of Hydrology 351(3–4), 299–317.
 
27.
Kim, S., Kim , J.H. , Park ,K.B., 2009. Théorie de l'apprentissage statistique pour la désagrégation des données climatiques. Actes du 33e Congrès IAHR 2009, IAHR/AIRH, Vancouver, Colombie-Britannique, Canada PP. 1154–1162.
 
28.
Kim, S., Shiri, J., Kisi, O., 2012. Pan evaporation modeling using neural computing approach for different climatic zones. Water Resources Management 26(11), 3231–3249.
 
29.
Kisi, O., 2006. Daily pan evaporation modeling using a neuro-fuzzy computing technique. Journal of Hydrology 329(3–4), 636–646.
 
30.
Kisi, O., 2009. Modeling monthly evaporation using two different neural computing techniques. Irrigation Science 27(5), 417–430.
 
31.
Kouakou, Y.K.N., Yao, G.F., Baka, D., Gala, B.T.J., Kouadio, K.G., Yaokouame, A., 2021. Détermination de quelques caractères hydrodynamiques de la couverture pédologique d’un versant à végétation de savane arborée dans la localité de brobo au centre de la Côte D’ivoire. International Journal of Current Research 13(10), 19348–19354. https://doi.org/10.24941/ijcr.....
 
32.
Lachhab, A., Dahhak, E.D., Bouchikhi-Ezzine., 2005. Strategy of developing a greenhouse climate control with a computer system. In: ICMS 2005. Marrakech, 22–24 November 2005.
 
33.
Lallahem, S., 2003. Structure et modélisation hydrodynamique des deux eaux souterraines: application à l’aquifère crayeux de la bordure nord du bassin de Paris. Lille: Société Géologique du Nord.
 
34.
Lavado, C., Maneta, J.F.M., Schnabel, S., 2006. Prediction of near-surface soil moisture at large scale by digital terrain modeling and neural networks. Environmental Monitoring and Assessment 121, 213–232.
 
35.
Maier, H.R., Dandy, G.C., 2001. Neural network based modeling of environmental variables: a systematic approach. Mathematical and Computer Modeling 33, 669–682.
 
36.
Martiniello, P., 2012. Biochemical parameters in a Mediterranean soil as affected by wheat-forage rotation and irrigation. European Journal of Agronomy 26(3), 198–208. https://doi.org/10.1016/j.eja.....
 
37.
Minasny, B., McBratney, A.B., 2002. Uncertainty analysis for pedotransfer functions. European Journal of Soil Science 53, 417–429.
 
38.
Nemes, A., Rawls, W.J., Pachepsky, Y.A., Van Genuchten, M.T., 2006. Sensitivity analysis of the nonparametric nearest neighbor technique to estimate soil water retention. Vadose Zone Journal 5(4), 1222–1235.
 
39.
Noshadi, E., Bahrami, H. A., Alavipanah, S., 2013. Prediction of surface soil colour using ETM satellite images and artificial neural network approach. International Journal of Agriculture 3, 87–95.
 
40.
Pachepsky, Y.A., Rawls, W.J., 2003. Soil structure and pedotransfer function. European Journal of Soil Science 54, 443–452.
 
41.
Piechowicz, S., 2004. Intelligence Artificielle et diagnostic. In Techniques De L'ingénieur (Ed.), Collection des Techniques de l'Ingénieur, Techniques de l’Ingénieur, Paris 1–20.
 
42.
Rivals, I., 1995. Modélisation et commande de processus par réseaux de neurones; application au pilotage d’un véhicule autonome. Thèse de Doctorat, Paris VI.
 
43.
Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M, Bloodworth, H., 2003. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76.
 
44.
Raza, K., Jothiprakash, V., 2014. Multi output ANN model for prediction of seven meteorological parameters in a weather station. Journal of The Institution of Engineers Ser. A 95, 221–229.
 
45.
Sudheer, K.P., Gosain , A.K., Mohana, R.D., Saheb, S.M., 2002. Modeling Evaporation Using an Artificial Neural Network Algorithm. Hydrological Processes 16, 3189 –3202. https://doi.org/10.1002/hyp.10....
 
46.
Tessier, T., Coquet, Y., Lefèvre, Y., Bréda, N., 2007. Rôle de la végétation dans les processus de propagation de la sécheresse dans les sols argileux. Revue Française de Géotechnique, n° spéciale « sècheresse géotechnique», 120–121, 35–43.
 
47.
Tymvois, F.S., Jacovides, C.P., Michaelides, S.C., Scouteli, C., 2005. Étude comparative des Méthodologies Angströms et des réseaux de neurones artificiels dans l'estimation du rayonnement solaire global» Énergie solaire.
 
48.
U.S.D.A., 1960. Soil classification: a comprehensive system [prepared by] Soil Survey Staff. 7th approximation. Washington, D.C., USA, U.S.D.A.
 
49.
Vereecken, H., Maes, J., Feyen J., Darius, P., 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science 148, 389–403.
 
50.
Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J., 2001. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology 251, 123–150. https://doi.org/10.1016/S0022-....
 
51.
Ziane, A., Douaoui, A., Yahiaoui, B., Pulido, M., Larid, M., Gulakhmadov Xi, Chen., 2021. Upgrading the Salinity Index Estimation and Mapping Quality of Soil Salinity Using Artificial Neural Networks in the Lower-Cheliff Plain of Algeria in North Africa, Canadian Journal of Remote Sensing, 48(2). https://doi.org/10.1080/070389..., A., Douaoui, A., Pulido, M., Larid, M,. 2022. Assessment of Salinization Through ANN Learned with Remote Sensing and DEM Data in Soils of the Lower Cheliff Plain (Algeria). Journal of the Indian Society of Remote Sensing 50, 1603–1614. https://doi.org/10.1007/s12524....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top