PL EN
PRACA ORYGINALNA
Potentially toxic elements and radionuclides contamination in soils from the vicinity of an ancient mercury mine in Huancavelica, Peru
 
Więcej
Ukryj
1
Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Peru
 
2
Escuela de Administración de Turismo Sostenible y Hotelería, Universidad Nacional Autonoma de Huanta, Peru
 
3
School of Biological and Environmental Sciences, Liverpool John Moores University, United Kingdom
 
4
Cavendish Laboratory, Department of Physics, University of Cambridge, United Kingdom
 
5
Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Peru
 
 
Data nadesłania: 20-08-2024
 
 
Data ostatniej rewizji: 01-04-2025
 
 
Data akceptacji: 25-04-2025
 
 
Data publikacji online: 25-04-2025
 
 
Data publikacji: 25-04-2025
 
 
Autor do korespondencji
Luis De Los Santos Valladares   

Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Ave., CB3 0HE, Cambridge, United Kingdom
 
 
Soil Sci. Ann., 2025, 76(2)204389
 
SŁOWA KLUCZOWE
STRESZCZENIE
Mining activities can release large amounts of potentially toxic elements (PTE) and radionuclides in an uncontrolled manner, causing environmental contamination. This work looks at the PTE and radionuclide levels in Huancavelica, a Peruvian Andean city where the ancient mercury mine Santa Barbara operated for about five centuries, from 1573 to 1970. Although the mine closed in 1970, reports indicate that PTE contamination persists. Five representative soil samples were collected from the north, south, east and west sides of the city near the Huancavelica River. The samples were analyzed by X-fluorescence spectroscopy (XRF), Inductively Coupled Plasma – Mass Spectroscopy (ICP-MS) and Gamma Spectroscopy. High contamination levels of As, Cd, Pb, Zn, Ni and Cu, while low levels of Hg and Cr were found compared to the local and international standards. The highest concentration Ni (184.3 mg kg-1), Cu (1223 mg kg-1), Zn (1526 mg kg-1), Cd (11.41 mg kg-1) and Hg (6.2 mg kg-1) were found in Yananaco, the district closest to the mine. This area also showed the presence of calcite. In addition, the specific activities of the three naturally occurring radioactive materials (NORM) varied: 226Ra from 38.0 to 137.3 Bq kg-1, 232Th from 40.1 to 50.5 Bq kg-1, and 40K from 505.5 to 793.3 Bq kg-1. The average absorbed dose rate (D) for the samples was 85.9 nGy/h, which is 1.7 times higher than the global average. Similarly, the average Annual Effective Dose (E) was 0.105 mSv/y, 1.5 times higher than the world average. Furthermore, the data reveals strong positive Pearson correlations for Hg-Ni pairs (0.981) and 226Ra-232Th (0.960). Negative correlations were found for 226Ra-As pairs (-0.984) and 232Th-As (-0.962). These results indicate that historical mercury extraction activities increased exposure of PTE and NORM in Huancavelica. This contamination remains in areas near the abandoned mine today.
REFERENCJE (108)
1.
Adukpo, O., Ahiamadjie, H., Tandoh, J., Gyampo, O., Nyarku, M., Darko, E., Faanu, A., Dampare, S., 2010. Assessment of NORM at diamond cement factory and its effects in the environment. Journal of Radioanalytical and Nuclear Chemistry 287, 87–92. https://doi.org/10.1007/s10967....
 
2.
Agency, E., 2007. UK Soil and Herbage Pollutant Survey. Report N° 7: Enviromental concetrations of heavy metals in UK soil and herbage. UK: Environment Agency, pp 132.
 
3.
Agency, International Atomic Energy, 2016. Reference Sheet for IAEA-RGK-1. Seibersdorf: International Atomic Energy Agency. https://analytical-reference-m....
 
4.
Al-Jundi, J., Al-Bataina, J., Abu-Rukah, B., Shehadeh, H.M., 2003. Natural radioactivity concentrations in soil samples along the Amman Aqaba Highway, Jordan. Radiation Measurements 36(1–6), 555–560. https://doi.org/10.1016/S1350-....
 
5.
Al-Saleh, F., Al-Harshan, G., 2008. Measurements of radiation level in petroleum products and wastes in Rivadh city Refinery. Journal Environ Radioact 99, 1026–1031. https://doi.org/10.1016/j.jenv....
 
6.
Atibu, E., Arpagaus, P., Mulaji, C., Mpiana, P., Poté, J., Loizeau, J.L., Carvalho, F., 2022. High Environmental Radioactivity in Artisanal and Small-Scale Gold Mining in Eastern Democratic Republic of the Congo. Minerals 12(10), 1278.
 
7.
Ayala, I., 2020. Recuperación y conservación de los recursos hídricos para el mejoramiento ganadero en cabecera de la sub cuenca del rio Ichu del departamento de Huancavelica. Huancavelica: Gerencia Regional de Recursos Naturales y Gestión Ambiental, Gobierno Regional de Huancavelica 1(1), 633. https://sinia.minam.gob.pe/sit....
 
8.
Baeza, A., Alonso, A., Heras, M., 2003. Procedimiento para la conservación y preparación de muestras de suelo para la determinación de la radiactividad. Madrid-España.: Consejo de Seguridad Nuclear (CSN). Retrieved from https://www.csn.es/documents/1....
 
9.
Bailey, E., Gray, J., Theodorakos, P., 2002. Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska, USA. Geochemistry: Exploration, Environment, Analysis 2(3), 275–285. https://doi.org/10.1144/1467-7....
 
10.
Bakr, S., Sayed, M., Salem, K., Morsi, E., Masoud, M., Ezzat, E., 2023. Lead (Pb) and cadmium (Cd) blood levels and potential hematological health risk among inhabitants of the claimed hazardous region around Qaroun Lake in Egypt. BMC Public Health 23(1071), 2–11. https://doi.org/10.1186/s12889....
 
11.
Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, J., Tobias, F., Barranzuela, J, Vásquez, E., (1997). Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of The Total Environment 203(1) 83–91. https://doi.org/10.1016/S0048-....
 
12.
Benson, J., Cheng, Y., Eidson, A., Hahn, F., Henderson, R., Pickrell, J., 1995. Pulmonary toxicity of nickel subsulfide in F344/N rats exposed for 1-22 days. Toxicology 103(1), 9–22. https://doi.org/10.1016/0300-4....
 
13.
Beretka, J., Matthew, P., 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics 48(1), 87–95. https://doi.org/10.1097/000040....
 
14.
Bergdahl, I. Skerfving, S., 2022. Chapter 19 – Lead. Handbook on the Toxicology of Metals (Fifth Edition) II, 427–493. https://doi.org/10.1016/B978-0....
 
15.
Biester, H., Müller, G., Schöler, H., 2002. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of The Total Environment 284(1–3), 191–203. https://doi.org/10.1016/S0048-....
 
16.
Bishop, K., et al. 2020. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of The Total Environment 721, 137647. https://doi.org/10.1016/j.scit....
 
17.
Bissen, M., Frimmel, F., 2003. Arsenic a Review. Part II: Oxidation of Arsenic and its Removal in Water Treatment. Acta hydrochimica et hydrobiologica 31, 97–107.
 
18.
Cancès, B., Juillot, F., Morin , G., Laperche, V., Polya, D., Vaughan, D., Hazemann J., Proux, O., Brown, J., Calas, G., 2008. Changes in arsenic speciation through a contaminated soil profile: A XAS based study. Science of The Total Environment 397, 178–189. https://doi.org/10.1016/j.scit....
 
19.
Castillo, M., Borja, L., De Los Santos, L., Gonzales, J., Medina, J., Trujillo, A., Peña, V., 2022. Magnetic, structural and Mossbauer Study of soils from an ancient mining area in Huancavelica-Perú. Hyperfine Interactions 243(3), 1–16. https://doi.org/10.1007/s10751....
 
20.
Castro-Bedriñana, J., Chirinos-Peinado, D., Ríos-Ríos, E., 2013. Niveles de plomo en gestantes y neonatos en la ciudad de la Oroya, Perú. Revista Peruana de Medicina Experimental y Salud Publica 30(3), 393–398. http://www.scielo.org.pe/pdf/r....
 
21.
Chashschin, V., Artunina, G., Norseth, T., 1994. Congenital defects, abortion and other health effects in nickel refinery workers. Science The Total Environment 148(2–3), 287–91. https://doi.org/10.1016/0048-9....
 
22.
Cheng, H., Li , M., Zhao, C., Li, K., Peng, M., Qin, A., Cheng, X., 2014. Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration 139, 31–52. https://doi.org/10.1016/j.gexp....
 
23.
Choudhury, T., Ferdous, J., Haque, M., Rahman, M., Quraishi, S., Rahman, M., 2022. Assesment of heavy metals and radionuclides un groundwater and associated human health risk appraisal in the vicinity of Rooppur nuclear plant, Bangladesh. Journal of Contaminant Hydrology 251, 104072. https://doi.org/10.1016/j.jcon....
 
24.
De Los Santos Valladares, L., Ccamapaza, J.L., Valencia-Bedregal, R.A., Borja-Castro, L.E., Velazquez-Garcia, J., Nimalika Perera, D.H., Barnes, C., 2022. Physical and chemical characterization of sediments from an Andean river exposed to mining and agricultural activities: The Moquegua River, Peru. International Journal of Sediment Research 37, 780–793. https://doi.org/10.1016/j.ijsr....
 
25.
De Los Santos Valladares, L., Vargas Luque, A., Borja Castro, L., Valencia Bedregal, R., Velazquez-Garcia, J., Peregrine Barnes, E., William Barnes, C., 2024. Physical and chemical techniques for a comprehensive characterization of river sediment: A case of study, the Moquegua River, Peru. International Journal of Sediment Research 39, 478–494. https://doi.org/10.1016/j.ijsr....
 
26.
Dev Singh, A., Khanna, K., Kour, J., Dhiman, S., Bhardwaj, T., Devi, K., Bhardwaj, R., 2023. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 319, 137917. https://doi.org/10.1016/j.chem....
 
27.
Douglas, G., Reddy, S., Saxey, D., MacRae, C., Webster, N., Beeching, L., 2023. Engineered mineralogical interfaces as radionuclide repositores. Scientific Reports 13, 2121. https://doi.org/10.1038/s41598....
 
28.
El-Taher, A., Makhluf, S., 2010. Natural radioactivity levels in phosphate fertilizer and its environmental implications in Assuit governorate, Upper Egypt. Indian journal of Pure and Applied Physics 48(10), 697–702. https://nopr.niscpr.res.in/bit....
 
29.
Fernandez, B., Mullisaca, E., Huanchi, L., 2022. Level of soil contamination with arsenic and heavy metals in Tiquillaca (Peru). Journal of High Andean Research 24(2), 131–138. http://dx.doi.org/10.18271/ria....
 
30.
Florida, N., 2021. Cadmium in soil and cacao beans of Peruvian and South American origin. Revista Facultad Nacional de Agronomia Medellín 74(2), 9499–9515. https://doi.org/10.15446/rfnam....
 
31.
Foulds, S., Brewer, P., Macklin , M., Haresign, W., Betson, R., Rassner, S., 2014. Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Science of The Total Environment 476–477(1), 165–180. https://doi.org/10.1016/j.scit....
 
32.
Gaioli, M., Amoedo, D., González, D., 2012. Impacto del mercurio sobre la salud humana y el ambiente. Arch Argent Pediatr 110(3), 259–264. http://www.dx.doi.org/10.5546/....
 
33.
Galhardi, J., García-Tenorio, R., Bonotto , D., Díaz , I., Motta, J., 2017. Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil. Journal of Environmental Radioactivity 177, 37–47. https://doi.org/10.1016/j.jenv....
 
34.
Gazineu, M., Hazin, C., 2008. Radium and potassium-40 in solid wastes from the oil industry. Applied Radiation and Isotopes 66(1), 90–94. https://doi.org/10.1016/j.apra....
 
35.
Gilli, R., Karlen, C., Weber, M., Rüegg, J., Barmettler, K., Biester, H., Kretzschmar, R., 2018. Speciation and Mobility of Mercury in Soils Contaminated by Legacy Emissions from a Chemical Factory in the Rhône Valley in Canton of Valais, Switzerland. Soil Systems 2(44), 22. https://doi.org/10.3390/soilsy....
 
36.
Gnamuš, A., Byrne, A., Horvat, M., 2000. Mercury in the Soil-Plant-Deer-Predator Food Chain of a Temperate Forest in Slovenia. Environmental Science & Technology 34(16), 3337 –3345. http://dx.doi.org/10.1021/es99....
 
37.
Gosar, M., Šajn, R., Biester, H., 2006. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Science of The Total Environment 369(1–3), 150–162. https://doi.org/10.1016/j.scit....
 
38.
Gussone, N., Böhm, F., Eisenhauer, A., Dietzel, M., Heuser, A., Teichert, B., Wolf, C., 2005. Calcium isotope fractionation in calcite and aragonite. Geochimica et Cosmochimica Acta 69(18), 4485–4494. https://doi.org/10.1016/j.gca.....
 
39.
Hagan, N., 2014. Residental Mercury contamination and Exposure in Huancavelica, Perú. University of North Carolina at Chapel Hill. https://doi.org/10.17615/vdda-....
 
40.
Hagan, N., Robins, N., Espinoza, R., Hsu-Kim, H., 2015. Speciation and bioaccessibility of mercury in adobe bricks and dirt floors in Huancavelica. Environmental Geochemistry and Health, 37, 263–272. https://doi.org/10.1007/s10653....
 
41.
Halbach, K., Mikkelsen, Ø., Berg, T., Steinnes, E., 2017. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567–574. https://doi.org/10.1016/j.chem....
 
42.
Hamlat , M., Djeffal, S., Kadi, H., 2001. Assessment of radiation exposures from naturally occurring radioactive materials in the oil and gas industry. Applied Radiation and Isotopes 55(1), 141–146. https://doi.org/10.1016/S0969-....
 
43.
Handbook of Radiatioativity Analysis Vol 1: Radiation Physic an Detectors. Academic Press, Elsevier 2020 ISBN 978–0–12–814397-1, https://doi.org/10.1016/C2016-....
 
44.
He, S., He, Z., Yang, X., Stoffella, P., Baligar, V., 2015. Chapter Four-Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy 134, 135–225. https://doi.org/10.1016/bs.agr....
 
45.
Higueras, P., Oyarzun, R., Biester, H., Lillo, H., Lorenzo, J., 2003. A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. Journal of Geochemical Exploration 180(1), 95–104.
 
46.
Huerta Alata, M., Alvarez-Risco, A., Suni Torres, L., Moran, K., Pilares, D., Carling, G., Yáñez, J., 2023. Evaluation of Environmental Contamination by Toxic Elements in Agricultural Soils and Their Health Risks in the City of Arequipa, Peru. Sustainability 15(4), 3829. https://doi.org/10.3390/su1504....
 
47.
Hunter, M., Perera, D., Barnes, E., Lepage, H., Escobedo Pacheco, E., Idros, N.,Barnes, C., 2024. Landscape-Scale Mining and Water Management in a Hyper-Arid Catchment: The Cuajone Mine, Moquegua, Southern Peru. Water 16(769), 28. https://doi.org/10.3390/w16050....
 
48.
International Atomic Energy Agency (IAEA, 2011. Referencia Material. Viena: International Atomic Energy Agency. https://analytical-reference-m....
 
49.
International Atomic Energy Agency (IAEA), 2012. Extent of Environmental by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. Technical Reports Series N° 419. New York: IAEA.
 
50.
International Organization for Standardization (ISO), 2015. ISO: 18589–3. Medición de la radiactividad en el medio ambiente. Suelo. Parte3. https://www.iso.org/standard/8....
 
51.
International Atomic Energy Agency (IAEA), 2016. Reference Sheet for IAEA-RGTh-1 thorium. Seibersdorf: International Atomic Energy Agency. https://analytical-reference-m....
 
52.
International Atomic Energy Agency (IAEA), 2019. Certified Reference IAEA-412. Viena: International Atomic Energy Agency. https://analytical-reference-m....
 
53.
International Atomic Energy Agency (IAEA), 2019. Determination and interpretation. International Atomic Energy Agency.
 
54.
International Atomic Energy Agency (IAEA, 2021. Referencia Certificad IAEA-447. Seibersdorf: International Atomic Energy Agency. https://analytical-reference-m....
 
55.
International Organization for Standardization (ISO), 2019. ISO: 19581. Medición de la Radiactividad-Radionucleidos emisores de rayos gamma-Método de cribado rápido mediante espectrometría de rayos gamma con detectores de centello. https://www.iso.org/standard/6....
 
56.
Kabata-Pendias, A., Pendias, H., 2001. Trace Elements in Soil and Plants (3rd ed.). (CRC, Ed.) Florida, EE.UU.: CRC-Press, Boca Raton London New York Washington, D.C. Pp. 403.
 
57.
Kaniu, M., Angeyo, H., Darby, I., Muia, L., 2018. Rapid in-situ radiometric assessment of the Mrima-Kiruku high background radiation anomaly complex of Kenya. Journal of Environmental Radioactivity 188, 47–57. https://doi.org/10.1016/j.jenv....
 
58.
Karahan, G., Bayulken, A., 2000. Assessment of gamma dose rates around Istanbul (Turkey). Journal of Environmental Radioactivity 47(2), 213–221. https://doi.org/10.1016/S0265-....
 
59.
Kim, K., Churchill, D., 2011. Phosphorus: Radionuclides. Encyclopedia of Inorganic and Bioinorganic Chemistry. https://doi.org/10.1002/978111....
 
60.
Krishna, A., Govil, P., 2007. Soil Contamination Due to Heavy Metals from an Industrial Area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment 124, 263–275 (2007). https://doi.org/10.1007/s10661....
 
61.
Kubier, A., Wilkin, R., Pichler, T., 2019. Cadmium in soils and groundwater: A review. Applied Geochemistry 108, 104388. https://doi.org/10.1016/j.apge....
 
62.
Li, S., Jia, Z., 2018. Heavy metals in soils from a representative rapidly developing megacity (SW China): Levels, source identification and apportionment. Catena 163, 414–423. https://dx.doi.org/10.1016/j.c....
 
63.
Liu, Y., Zhou, W., Gao, B., Zheng, Z., Chen, G., Wie, Q., He, Y., 2021. Determination of redionuclide concentration and radiological hazard in soil and water near the uranium tailing reservoir in China. Environmental Pollutants and Bioavailability 33(1), 174–183. https://doi.org/10.1080/263959....
 
64.
Manta, D., Angelone, M., Bellanca, A., Neri, R., Sprovieri, M., 2002. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of The Total Environment 300(2), 229–243. https://doi.org/10.1016/S0048-....
 
65.
Matisoff, G., Whiting, P.. 2011. Measuring Sil Erosion Rates Using Natural (7Be, 210Pb) and Anthropogenic (137Cs, 239,240Pu) Radionuclides. Handbook of Environmental Isotope Geochemistry I, 487–519. https://doi.org/10.1007/978-3-....
 
66.
Ministerio de Agricultura y Riego del Perú (MIDAGRI), 2009. Huancavelica: Ministerio Agricultura, pp 20. https://www.midagri.gob.pe/por....
 
67.
Ministerio del Ambiente, 2017 (MINAM). Estándares de Calidad Ambiental - Decreto Supremo N° 011–2017-MINAM. Ministerio del Ambiente - MINAM. Lima: Diario El Peruano, pp 4. https://www.minam.gob.pe/wp-co....
 
68.
Ministerio de Transporte de Comunicaciones (MTC), 2022. El Anuario Estadístico 2022. Lima: Oficina Estadistica del Ministerio de Transporte y Comunicaciones, pp 237. https://cdn.www.gob.pe/uploads....
 
69.
Mohuba, S., Abiye , T., Nhleko, S., 2022. Evaluation of Radionuclide Levels in Drinking Water from Communities near Active and Abandoned Gold Mines and Tailings in the West Rand Region, Gauteng, South Africa. Minerals 12(11), 1370. https://doi.org/10.3390/min121....
 
70.
Moshupya, M., Mohuba, S., Abiye, T., Korir, I., Nhleko, S., Mkhosi, M., 2022. In Situ Determination of Radioactivity Levels and Radiological Doses in and around the Gold Mine Tailing Dams, Gauteng Province, South Africa. Minerals 12(10), 1295. https://doi.org/10.3390/min121....
 
71.
Orellana, E., Pérez, L., Custodio, M., Bulege, W., Yallico, L., Cuadrado, W., 2021. Cadmium, Lead and Zinc in the Soil-Plant-Alpaca System and Potential Health Risk Assessment Associated with the Intake of Alpaca Meat in Huancavelica, Peru. Journal of Ecological Engineering 22(3), 40–52. https://doi.org/10.12911/22998....
 
72.
Osterwalder, S., et al, 2019. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Environmental Pollution 250, 944–952. https://doi.org/10.1016/j.envp....
 
73.
Paktun, D., Foster, A., Heald, S., Laflamme, G., 2004. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta 68(5), 969–983. https://doi.org/10.1016/j.gca.....
 
74.
Parmaksiz, A., Ozkov, Y., Agus, Y., 2023. Natural radioactivity of a copper-zinc mine with a production facility in Turkiye and radiological consequences of usage of the tailing as a concrete additive. Journal of Radioanalytical and Nuclear Chemistry 332, 211–223. https://doi.org/10.1007/s10967....
 
75.
Perevoshchikov, R., Perminova, A., Menshikova, E., 2022. Natural radionuclides in soils of natural-technogenic landscapes in the impact zone of potassium salt mining. Minerals 12(11), 1352. https://doi.org/10.3390/min121....
 
76.
Ponce, J., Van Geen, A., Landes, F., Palacios, E., Ponce, P., Languasco, J., Vargas, R., 2024. Assessing Risk Levels of Lead Presence in Residential Soils: A Case Study in Lima, Peru. Journal, ISEE Conference Abstracts (1). https://doi.org/10.1289/isee.2... Puga, S., Sosa, M., Lebgue, T., Quintana, C., Campos, A., 2006. Contaminación por metales pesados en suelos provocados por la industria minera. Ecología Aplicada 5(1,2), 149–155.
 
77.
Quintana, B., Pérez Iglesias, J., 2004. Selección, preparación y uso de patrones para espectroscpia gamma. Madrid: Consejo de Seguridad Nuclear. https://www.csn.es/documents/1....
 
78.
Rahim, H., Akbar, W., Alatalo, J., 2022. A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy 12(4), 877. https://doi.org/10.3390/agrono....
 
79.
Ramirez, A., 1986. Cadmium pollution in La Oroya, Peru. La Oroya, Perú: Bulletin of the Pan American Health Organization (PAHO) 20(4). https://iris.paho.org/handle/1....
 
80.
Ramirez, A., 2008. Intoxicación ocupacional por mercurio. Anales de la Facultad de Medicina 69(1), 46–51. http://www.scielo.org.pe/pdf/a....
 
81.
Rani, A., Singh, S., 2005. Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry. Atmospheric Environment 39(34), 6306–6314. https://doi.org/10.1016/j.atmo....
 
82.
Robins, N., 2011. Mercury, mining and empire, The human and ecological costs of colonial silver mining in the Andes. Indiana University Press, pp 320.
 
83.
Rodrigues, S., et al, 2006. Mercury in urban soils: A comparison of local spatial variability in six European cities. Science of The Total Environment 368(2–3), 926–936. https://doi.org/10.1016/j.scit....
 
84.
Rollog, M., Cook, N., Guagliardo, P., Ehrig, K., Kilburn, M., 2020. Radionuclide distributions in Olympic Dam copper concentrates: The significance of minor hosts, incorporation mechanisms, and the role of mineral surfaces. Minerals Engineering 148, 106176. https://doi.org/10.1016/j.mine....
 
85.
Salas-Mercado, D., Hermoza-Gutierrez, M., Belizario-Quispe, G., Chaiña, F., Quispe, E., Salas-Ávila, D., 2022. Geochemical Indices for the Assessment of Chemical Contamination Elements in Sediments of the Suches River, Peru. Pollution 8(2), 595–610, doi: 810.22059/POLL.2021.331806.1205.
 
86.
Satoshi, U., Stephen, P., Blum, J., Rodney, E., 2003. Nanoscale mineralogy of arsenic in a region of New Hampshire with elevated As-concentrations in the groundwater. American Mineralogist 88, 1844–1852. https://doi.org/10.2138/am-200....
 
87.
Sharma, R., Ramteke, S., Patel, K., Kumar, S., Sarangi, B., Agrawal, S., Lata, L., Milosh, H., 2015. Contamination of Lead and Mercury in Coal Basin of India. Journal of Environmental Protection 6(12), 1430–1441. http://dx.doi.org/10.4236/jep.....
 
88.
Schnitzer, M., Turner, R., Hoffman, I., 1964. A Thermogravimetric study of organic matter of representative canadian podzol soils. Canadian Journal of Soil Science 44(1), 7–13.
 
89.
Servicio Nacional de Sanidad Agraria (SENASA), 2012. Enero 31. Resolución Jefatural N° 0013–2012-AG-SENASA. El Peruano, pp. 460175–460177.
 
90.
Smialowicz, R., Rogers, R., Riddle, M., Stott, G., 1984. Immunologic effects of nickel: I. Suppression of cellular and humoral immunity. Environmental Research 33(2), 413–27. https://doi.org/10.1016/0013-9....
 
91.
Soares, L., Egreja , F., Linhares, L., Windmoller , C., Yoshida, M., 2015. Acumulación y oxidación de mercurio elemental en suelos tropicales. Chemosphere 134, 181–191. https://doi.org/10.1016/j.chem....
 
92.
Steinnes, E., Berg, T., Sjøbakk, T., 2003. Temporal and spatial trends in Hg deposition monitored by moss analysis. Science of The Total Environment 304(1–3), 215–219. https://doi.org/10.1016/S0048-....
 
93.
Tapia, J., Murray, J., Ormachea, M., Tirado, N., Nordstrom, D., 2019. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Science of The Total Environment 678 (15) 309–325. ISSN 0048–9697. https://doi.org/10.1016/j.scit....
 
94.
Taylor, M., 2015. Soil quality monitoring in the Waikato Region 2013. New Zealand: Waikato Regional Council Technical Report 2013/49, pp 45. https://www.waikatoregion.govt....
 
95.
The Center for disease Control and Prevention CDC., 2022. The Adult Blood Lead Epidemiology and Surveillance (ABLES). https://www.cdc.gov/niosh/lead....
 
96.
The National Institute for Occupational Safety and Health (NIOSH), 2022. The Center for Disease Control and Prevention (CDC).
 
97.
Tijhuis, L., Brattli, B., Sæther, O., 2002. A Geochemical Survey of Topsoil in the City of Oslo, Norway. Environmental Geochemistry and Health 24, 67–94. https://doi.org/10.1023/A:1013....
 
98.
Tóth, G., Hermann, T., Szatmári, G., Pásztor, L., 2016. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed asseeement. Science of The Total Environment 565, 1054–1062. https://doi.org/10.1016/j.scit....
 
99.
Torres, F., De la Torre, G., 2022. Mercury pollution in Peru: geographic distribution, health hazards, and sustainable removal technologies. Environmental Science Polluty Research 29(36), 54045–54059. https://doi.org/10.1007/s11356....
 
100.
Tsolova, V., Lazarova, R., Yordanova, I., Staneva, D., 2022. Radioactivity of soils enriched with pyrogenic artefacts in the land of Pernik city, Bulgaria. Soil Science Annual 73(2), 150764. https://doi.org/10.37501/soils....
 
101.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2008. Source And Effects Of Ionizing Radiation. United Nations Publication. https://www.unscear.org/unscea....
 
102.
Uzarowicz, Ł., Stobiński, M., Jędrzejek, F., Szarłowicz, K., Murach, D., 2024. Radioactivity of Technosols on thermal power station ash disposal sites: Assessment of potential radiological human-health risk. Land Degradation & Development 35(13), 4093–4104. https://doi.org/10.1002/ldr.52....
 
103.
Van Geen, A., Bravo, C., Gil, V., Sherpa, S., Jack, D., 2012. Lead exposure from soil in Peruvian mining towns: a national assessment supported by two contrasting examples. Bulletin of the World Health Organization 90(12), 878–886.
 
104.
Vasconcelos, D., Pereira, C., Oliveira, A., Santos, T., Reis, P., Rocha, Z., 2011. Natural radioactivity in sand beaches of Guarapari, Espirito Santo state, Brazil: a comparative study. Belo Horizonte, Brazil, pp 7.
 
105.
Waldron, H.A, 1980. Metals in the Environment. London, New York: Academic Press, 1980. Print, pp 333.
 
106.
Wang, J., Feng, X., Anderson, C., Xing, Y., Shang, L., 2012. Remediation of mercury contaminated sites – A review. Journal of Hazardous Materials 221–222, 1–18. https://doi.org/10.1016/j.jhaz....
 
107.
Williams, M., Fordyce, F., Paijitprapapon, A., Charoenchaisri , P., 1996. Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, Southern Thailand. Environmental Geology 27, 16–33. https://doi.org/10.1007/BF0077....
 
108.
Xinwei, L., Xiaolan , Z., 2006. Measurement of natural radioactivity in sand samples collected from the Baoji Weihe Sands Park, China. Environmental Geology 50, 977–982. https://doi.org/10.1007/s00254....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top