Ways of soil development on stony substrate from hard coal mining spoil
Faculty of Biology, University Duisburg-Essen, Germany
Data nadesłania: 31-08-2020
Data ostatniej rewizji: 15-01-2021
Data akceptacji: 15-01-2021
Data publikacji online: 24-02-2021
Data publikacji: 24-02-2021
Autor do korespondencji
Wolfgang Burghardt   

Faculty of Biology, University Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
Soil Sci. Ann., 2020, 71(4), 382-394
The effect of stones on soil development is presented with the example from a hard coal mining spoil. The investigation concerns the stone and fine earth content, total bulk density, bulk density of the stone and fine earth fractions, pore volume, total carbon, organic carbon and sulfur content, as well as pH. Samples were taken from two different mine spoil depositions, the Monopol and Achenbach spoils, of the vegetation trial at Waltrop in the Ruhr area, Germany. Sampling occurred at the start of the trial and at two times, 8 and 14 years later, respectively. The samples were taken in big rings which were pushed into the mine spoil soil. The depth intervals of samples were tight with 0–2, 2–5, 5–10 and 10–20 cm below surface. Total organic carbon (TOC) and sulfur content and the pH were measured using standard methods. TOC was determined by destruction with H2O2. This proved to be a reasonable method which is relatively easy to perform. Soil formation occurred very fast, within eight years, in substrate with stone content by weight of 60–80 %. However, the way of soil formation differed between the Monopol and Achenbach mining spoils. The results indicate that in Monopol spoil, accumulation of TOC occurred by the intrusion of fine earth into pores between stones. However, in Achenbach spoil, fine earth was formed by the weathering of stones. The TOC content of fine earth achieved 8 to 16 mg g-1. The TOC stock within 20 cm depth and 1 m2 of the Monopol and Achenbach spoils was 1.0 and 0.6 kg, respectively. This is a very low value compared to the up to 12 kg in 1 m depth of the farmland soils of the region. The mine spoils contain between 2 and 18 mg g-1 sulfur. Formation of sulfuric acid by the oxidation of sulfides in the spoil decreased the pH from 7.6 at the start of the trial to around pH 4.5 after 8 and 14 years in the Achenbach spoil. In the Monopol spoil, the pH increased with depth from pH 5.5 to 7.2. A negative relationship exists between pH and pore volume for the Monopol spoil. Due to the TOC accumulation of more than 6 mg g-1, the soils can be classified as Regosols from hard coal mining spoil substrate in the German classification system. Within US Soil Taxonomy, the soils would belong to the Entisols. In the WRB soil classification, the soils can be positioned to the Leptosols, with the qualifiers Technic, Skeletic and as an additional qualifier Sulfuric or alternative to the Technosols, with the qualifiers Spolic, Skeletic and Sulfuric. The occurrence of stony spoil deposits from deep hard coal mining in the loess belt from Eastern France to Eastern Ukraine changed large areas of originally rich fertile soils to poor soils, but promoted the bio-diversity.
Alves Dias, P., et al., 2018. EU coal regions: opportunities and challenges ahead, EUR 29292 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-89884-6., JRC112593.
Arbeitsgruppe Boden, 2005. Bodenkundliche Kartieranleitung (KA5) (Soil survey instruction). 5th Edition. Hannover. E.Schweizerbart‘sche Verlagsbuchhandlung, Stuttgart, 438pp. In German. ISBN 978-3-510-95920-4.
Bockheim, J.G., Gennadiyev, A.N., Hartemink, A.E ., Brevik, E.C., 2014. Soil-forming factors and Soil Taxonomy. Geoderma 226–227, 231–237.
Braunersreuter, M., Burghardt, W., 2002. Organic Matter Accumulation in Stony Soils from Hard Coal Mining Spoil. Proceedings of 17th World Congress of Soil Science, Bangkok, August 14 – 22, 2002, electronic version, 1670-1/8.
Burghardt, W., 1989a. C-, N- und S-Gehalte als Merkmale der Bodenbildung auf Bergehalden (C-, N- and S- content as features of soil formation on mining spoil). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 59II, 851-856. In German.
Burghardt, W., 1989b. Haldenbegrünung durch Oberflächengestaltung (Greening of mining spoil heaps by surface modeling). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 58, 233-234. (in German)
Burghardt, W., 1989c. Bodenbeschaffenheit und Pflanzennährstoffgehalte der Bodenvarianten des Begrünungsversuches Bergehalde Waltrop (Soil characteristics and plant nutrient contents of soil variants of the greening trial mine spoil heap Waltrop). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 58, 219-225. (in German)
Burghardt, W., 1994. Soils in urban and industrial environments. Zeitschrift. f. Pflanzenernährung und Bodenkunde 157, 205-214.
Burghardt, W. (1997): Skelettgehalte in Böden aus technogenen Substraten (Skeleton content in soils from technic substrates). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 85/III, 1115-1118. (in German)
Burghardt, W., Niggemeyer, M., 2002. Quality of stony soils and their remediation by humus formation – results from the field trial on shales from hard coal mining of Waltrop, Ruhr area.[In:] Al-Awadhi, N.M., Taha, F.K.(Eds.), new technologies for soil reclamation and desert greenery. Amherst Scientific Publishers, Amherst, Massachusetts USA, 255 – 268.
Burghardt, W., Morel, J.L., Zhang, G-L., 2015. Development of the soil research about urban, industrial, traffic, mining and military areas (SUITMA). Special Issue: Soils of anthropized environments. Soil Science and Plant Nutrition 61, Supplement 1:3-21.
Burghardt, W., Schneider, Th., 2016. Bulk density, and content, density and stock of carbon, nitrogen and heavy metals in vegetable patches and lawns of allotment gardens in the north-western Ruhr area, Germany. Journal of Soils and Sediments 18(2), 407-417;
Burghardt, W., Heintz, D., Hocke, N., 2018. Soil Fertility Characteristics and Organic Carbon Stock in Soils of Vegetable Gardens Compared with Surrounding Arable Land at the Center of the Urban and Industrial Area of Ruhr, Germany. Eurasian Soil Science 51, 9, 1067-1079.
Daniels, W.L., Zipper, C.E., 2018. Creation and management of productive mine soils. Virginia Cooperative Extension, Pub. 460–121, Virginia Tech, Blacksburg, VA.
Deutscher Wetterdienst, 2019. Niederschlag: vieljährige Mittelwerte 1981 – 2010 (Precipitation; quarterly mean 1981-2010). (in German) Deutscher Wetterdienst (2019): Niederschlag: vieljährige Mittelwerte 1981 - 2010.
Down, C.G., 1975. Soil development on colliery waste tips in relation to age. Journal of Applied Ecology 12, 613-635.
Flint, A.L., Childs, S., 1984. Physical properties of rock fragments and their effects on available water in skeletal soils. In: Nichols, J. D. ez l. Soil Science Society of America special publication number 13, 91-103: Madison.
Hackelberg, R., Mansfeld. T., Kögel-Knabner, I., 1995. Bodenentwicklung auf ehemaligen Bergehalden am Beispiel der Zeche Zollern II in Dortmund-Bövinghausen (Soil development of mining spoil heaps, example mine Zollern II in Dortmund-Bövinghasen). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 76/II, 1317-1320. (in German).
Haering, K.C., Daniels, W.L., Galbraith, J.C., 2004. Appalachian mine soil morphology and properties: effects of weathering and mining method. Soil Science Society of America Journal 68,1315–1325.
Hantschel, R., Beese, F., Hoewe, R., 1992. Bedeutung von Steinen für den Wassertransport. Ein idealisierter Laborversuch. (Importance of stones for the water transport. A labour experiment). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 67, 79-82. (in German).
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Jackson, M. L., 1958. Soil chemical analysis. Englewood Cliffs, New York.
Jochimsen, M.E.A., 1987. Vegetation development on mine spoil heaps – a contribution to the improvement of derelict land based on natural succession. [In:] Miyawaki, A., Bogenrieder, A., Okuda, S., and White, S. (Eds), Vegetation Ecology and Creation of New Environments, Proc. Intern. Symposium Tokio 1984, Tokai University Press, 245.
Jochimsen, M.E.A., 1989. Begrünung von Berghalden auf der Grundlage der natürlichen Sukzession. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 58, 226–232.
Jochimsen, M. E.A., 1996. Reclamation of Colliery mine spoil heaps founded on natural succession. [In:] Hüttl, R.F., Wisniewski, J. (Eds), Mine Site Recultivation. Water, Air and Soil Pollution 91, 99-108.
Jochimsen, M.E., 2001. Vegetation development and species assemblages in a long-term reclamation project on mine spoil. Ecological Engineering 17, 187–198.
Kelly, R.E., Kelly, R.E., 1987. Prediction of some mine spoil characteristics from exploration drill hole logs. Environmental Workshop 1987 Papers, Australian Mining Industry Council, Dickson, ACT, 49–65.
Kerth, M., 1988. Die Oxydation des Pyrits – dominierender chemisch Verwitterungsvorgang in Bergehaldenrohböden des Ruhrgebiets (The oxidation of Pyrite-dominant chemical weathering process in mine spoil raw soils of the Ruhr area). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 56, 375-380. (in German).
Kompała-Bąba, A., Bierza, W., Błońska, A. et al., 2019. Vegetation diversity on coal mine spoil heaps – how important is the texture of the soil substrate? Biologia 74, 419–436.
Maiti, S.K., Saxena, N.C., 1998. Biological reclamation of coalmine spoils without topsoil: An amendment study with domestic raw sewage and grass-legumes mixture. International Journal of Surface Mining, Reclamation and Environment 12, 87–90.
Maiti, S.K., Ghose, M.K., 2005. Ecological restoration of acidic coal mine overburden dumps- an Indian case study. Land Contamination and Reclamation 13(4), 361-369.
Morel JL, Chenu C, Lorenz K 2014: Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). Journal of Soils and Sediments 15, 1659–1666.
Nichols, J.D., Brown, P.L., Grant, W.J. (Eds.) (1984): Erosion and productivity of soils containing rock fragments. Soil Science Society of America special publication number 13, Madison, WI 53711.
Niggemeyer, M., Burghardt, W., 1996. Physikalische Merkmale der Bodenvarianten des Steinkohlebergehaldenversuches Waltrop (Physical characteristics of soil variants of mining spoil trial Waltrop). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 84, 41-44. (in German).
Pietrzykowski, M., Krzaklewski, W., 2018. Reclamation of mine lands in Poland. [In:] Prasad, M.N.V., Favas, P., Maiti, S.K. (Eds.), Bio-Geotechnologies for Mine Site Rehabilitation Elsevier, Amsterdam-Oxford-Cambridge, 493-513. ISBN 978-0-12-812986-9.
Rytter, R.-M., 2012. Stone and gravel contents of arable soils influence estimates of C and N stocks. CATENA 95, 153-159.
Sabiene, N., Kusliene, G., Zaleckas, E., 2010. The influence of land use on soil organic carbon and nitrogen content and redox potential. Zemdirbyste 97, 15–24.
Savage, S.M., Stevenson, F.J., 1961. Behavior of Soil Humic Acids Towards Oxidation with Hydrogen Peroxide. Soil Science Society Proceedings 25, 35-39.
Schneider, S., 1989. Bodenkundliche Untersuchungen auf der Bergehalde Waltrop im Rahmen eines Großversuches der Haldenrekultivierung (Soil investigations of the mining spoil heap Waltrop within the scope of a large scale trial of mining spoil restoration). Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 58, 211-218. In German
Schulin, H., Selim, M., Flühler, H., 1995. Bedetung des Bodenskeletts für die Verlagerung von gelösten Stoffen in einer Rendzina. (The importance of soil skeleton for the transport of dissolved compounds in a Rendzina (Calcaric Leptosol)). Zeitschrift Deutsche Geologische Gesellschaft 136, 397-405. (in German).
Sheoran, V., Sheoran, A.S., Poonia, P., 2010. Soil Reclamation of Abandoned Mine Land by Revegetation: A Review. International Journal of Soil, Sediment and Water 3(2), Article 13. Available at:
Uzarowicz, Ł., Skiba, S., 2011. Technogenic soils developed on mine spoils containing iron sulphides: Mineral transformation as an indicator of pedogenesis. Geoderma 163, 95–108.
Uzarowicz, Ł., 2011. Technogenic Soils developed on mine spoils containing iron sulfides in select abandoned industrial sites: Environmental Hazards and Reclamation Possibilities. Polish Journal of Environmental Studies 20(3), 771-782.
Weiss, J., Burghardt, W., Gausmann, P., Haag, R., Haeupler, H., Hamann, M., Leder, B., Schulte, A., Stempelmann, I., 2005. Nature returns to abandoned industrial land: Monitoring succession in urban-industrial woodlands in the German Ruhr. [In:] Kowarik, I., Körner, St. (Eds.), Wild Urban Woodlands. Springer Berlin Heidelberg, 143-162. DOI
Woch, M. W., Radwañska, M., Stefanowicz, A., 2013. Flora of spoil heaps after hard coal mining in Trzebinia (southern Poland): effect of substratum properties. Acta Botanica Croatia 72 (2), 237–256.
Zimmermann, P., Burghardt, W., 1987. Untersuchungen zum Einfluss der Reliefausformung auf die Ausgangsstadien der Bodenbildung und die Entwicklung des Bodentierbesatzes auf Bergehalden (Investigations to the influence of the molding of relief on the initial conditions of soil formation and the development of soil animal stocking on mining spoil heaps). Verhandlungen Gesellschaft für Ökologie XVII, 815-818, Göttingen (1989).
Journals System - logo
Scroll to top