PL EN
PRACA ORYGINALNA
Effects of cricket feces application on soil colloid surface charges and carbon fractions: A nutrient retention improving opportunity in tropical acidic sandy soil
 
Więcej
Ukryj
1
Sakon Nakhon Rajabhat University, Faculty of Agricultural Technology, Department of Plant Science, Sakon Nakhon 47000, Thailand
 
2
Rajamangala University of Technology Isan, Faculty of Natural Resources, Department of Thai Traditional Medicine, Sakon Nakhon 47160, Thailand
 
 
Data nadesłania: 25-09-2025
 
 
Data ostatniej rewizji: 24-11-2025
 
 
Data akceptacji: 23-01-2026
 
 
Data publikacji online: 23-01-2026
 
 
Data publikacji: 23-01-2026
 
 
Autor do korespondencji
Somchai Butnan   

Faculty of Agricultural Technology, Department of Plant Science, Sakon Nakhon Rajabhat University, 47000, Sakon Nakhon, Thailand
 
 
Soil Sci. Ann., 2026, 77(1)217311
 
SŁOWA KLUCZOWE
STRESZCZENIE
Acidic sandy soils in tropical regions have inherently low nutrient retention due to their highly weathered nature and low organic matter content. Organic amendments, like cricket feces, offer potential for improving soil properties; however, the temporal dynamics of soil charge characteristics under different application methods and rates remain unclear, particularly in variable-charged soils. This study evaluated the effects of application methods (incorporation versus surface placement) and rates (0, 3.13, 6.25, and 12.50 Mg ha-1) of cricket feces on charge characteristics of an acidic sandy soil in Northeast Thailand. An incubation experiment monitored changes in cation exchange capacity (CEC), zero point of net charge (ZPNC), and their related properties. CEC increased with the application rates and was negatively related to ZPNC throughout the experimental period. In the early stage, during 1–5 days, the incorporation treatments produced significantly higher CEC (2.40–3.80 cmol kg-1) than the surface application treatments (2.00–3.50 cmol kg-1), associated with higher pH, organic C, dissolved organic C, and decomposition rate (k). In the later stage, by day 45, surface application treatments showed significantly higher CEC (up to 2.73 cmol kg-1) than the incorporation treatments (2.33 cmol kg-1), corresponding with greater dissolved organic C and lower k, indicating the effects of organic matter quality affected by the decomposition rate. These findings demonstrated that incorporating cricket feces led to an immediate enhancement of nutrient retention, whereas surface application brought about a more prolonged retention effect.
REFERENCJE (70)
1.
Autaiwat, S., Butnan, S., 2024. Nitrogen transformation for varying application rates of incorporated and surfaced placements of cricket faeces in a tropical sandy soil. Tropical Agriculture 101(4), 497–509.
 
2.
Banik, P., Ghosal, P.K., Sasmal, T.K., Bhattacharya, S., Sarkar, B.K., Bagchi, D.K., 2006. Effect of organic and inorganic nutrients for soil quality conservation and yield of rainfed low land rice in sub-tropical plateau region. Journal of Agronomy and Crop Science 192(5), 331–343. https://doi.org/10.1111/j.1439....
 
3.
Barrow, N.J., Hartemink, A.E., 2023. The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil 487(1), 21–37. https://doi.org/10.1007/s11104....
 
4.
Bayu, W., Rethman, N.F.G., Hammes, P.S., 2005. The role of animal manure in sustainable soil fertility management in Sub-Saharan Africa: A review. Journal of Sustainable Agriculture 25(2), 113–136. https://doi.org/10.1300/J064v2....
 
5.
Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., Martínez-Estévez, M., 2017. Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science 8, 1767. https://doi.org/10.3389/fpls.2....
 
6.
Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen — Total. [In] Spark, D.L. (Ed.). Methods of soil analysis. Part 2. Chemical and Microbiological Propterties. SSSA Book Ser. 5. SSSA, Madison, Wisconsin, 595–624.
 
7.
Buckeridge, K.M., Mason, K.E., McNamara, N.P., Ostle, N., Puissant, J., Goodall, T., Griffiths, R.I., Stott, A.W., Whitaker, J., 2020. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment 1(1), 36. https://doi.org/10.1038/s43247....
 
8.
Butnan, S., Sriraj, P., Toomsan, B., 2023. Effects of electrolytes and soil-to-suspension ratios on pH in acidic-coarse textured soil. Indian Journal of Agricultural Research 58(1), 120–125. https://doi.org/10.18805/IJARe....
 
9.
Carmo, D., Lima, L., Silva, C., 2016. Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. Revista Brasileira de Ciência do Solo 40, e0150152. https://doi.org/10.1590/180696....
 
10.
Cogger, C., Hummel, R., Hart, J., Bary, A., 2008. Soil and redosier dogwood response to incorporated and surface-applied compost. HortScience 43(7), 2143–2150. https://doi.org/10.21273/HORTS....
 
11.
Costa, O.Y.A., Raaijmakers, J.M., Kuramae, E.E., 2018. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in Microbiology 9, 1636. https://doi.org/10.3389/fmicb.....
 
12.
Cox, J., Hue, N.V., Ahmad, A., Kobayashi, K.D., 2021. Surface-applied or incorporated biochar and compost combination improves soil fertility, Chinese cabbage and papaya biomass. Biochar 3(2), 213–227. https://doi.org/10.1007/s42773....
 
13.
Du, Z.-l., Wu, W.-l., Zhang, Q.-z., Guo, Y.-b., Meng, F.-q., 2014. Long-term manure amendments enhance soil aggregation and carbon saturation of stable pools in North China plain. Journal of Integrative Agriculture 13(10), 2276–2285. https://doi.org/10.1016/S2095-....
 
14.
Essington, M.E., 2003. Soil and Water Chemistry: An Integrative Approach. CRC Press, Boca Raton, Florida.
 
15.
FAO-UN, 2017. Soil orgaic carbon: The hidden potential. Food and Agriculture Organization of the United Nations, Rome.
 
16.
Finkl, C.W., 2008. Tropical soils. [In] Chesworth, W. (Ed.). Encyclopedia of Soil Science. Springer, Dordrecht, 793–803.
 
17.
Gillman, G.P., 2007. An analytical tool for understanding the properties and behaviour of variable charge soils. Soil Research 45(2), 83-90. https://doi.org/10.1071/SR0611....
 
18.
Guan, X.H., Li, D.L., Shang, C., Chen, G.H., 2006. Role of carboxylic and phenolic groups in NOM adsorption on minerals: A review. Water Supply 6(6), 155–164. https://doi.org/10.2166/ws.200....
 
19.
Hadas, A., Bar-Yosef, B., Davidov, S., Sofer, M., 1983. Effect of pelleting, temperature, and soil type on mineral nitrogen release from poultry and dairy manures. Soil Science Society of America Journal 47(6), 1129–1133. https://doi.org/10.2136/sssaj1....
 
20.
Halloran, A., Hanboonsong, Y., Roos, N., Bruun, S., 2017. Life cycle assessment of cricket farming in north-eastern Thailand. Journal of Cleaner Production 156, 83–94. https://doi.org/10.1016/j.jcle....
 
21.
Hoc, N.D., Timsuksai, P., Rambo, A.T., 2016. Cost-benefit analysis of vegetable production in Thai-Vietnamese homegardens in Northeast Thailand. Khon Kaen Agriculture Journal 44(3), 527–536.
 
22.
Hue, N., 2022. Soil acidity: development, impacts, and management. [In] Giri, B., Kapoor, R., Wu, Q.-S., Varma, A. (Eds.), Structure and Functions of Pedosphere. Springer Nature, Singapore, 103–131.
 
23.
Hue, N.V., 1992. Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage sludge. Communications in Soil Science and Plant Analysis 23(3–4), 241–264. https://doi.org/10.1080/001036....
 
24.
Islam, M.R., Singh, B., Dijkstra, F.A., 2022. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 160(2), 145–158. https://doi.org/10.1007/s10533....
 
25.
Jiao, Y., Meng, X., Qi, P., Li, Y., Zhang, X., Lu, H., Shi, J., Tian, X., 2025. Pathways of soil organic carbon accrual affected by manure combined with different nitrogen application rates: Highlighting microbial life history strategies and biomarker accumulation. Geoderma 459, 117384. https://doi.org/10.1016/j.geod....
 
26.
Jones, D.L., Willett, V.B., 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry 38(5), 991–999. https://doi.org/10.1016/j.soil....
 
27.
Jones, J.B., 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Boca Raton, Florida.
 
28.
Keerati-kasikorn, P., 1984. Soils in the Northeast of Thailand. Facultry of Agriculture, Khon Kaen University, Khon Kaen.
 
29.
Kemsawasd, V., Inthachat, W., Suttisansanee, U., Temviriyanukul, P., 2022. Road to the red carpet of edible crickets through integration into the human food chain with biofunctions and sustainability: A review. International Journal of Molecular Sciences 23(3), 1801. https://doi.org/10.3390/ijms23....
 
30.
Kirsten, M., Mikutta, R., Vogel, C., Thompson, A., Mueller, C.W., Kimaro, D.N., Bergsma, H.L.T., Feger, K.H., Kalbitz, K., 2021. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics. Scientific Reports 11(1), 5076. https://doi.org/10.1038/s41598....
 
31.
Kopecký, M., Kolář, L., Perná, K., Váchalová, R., Mráz, P., Konvalina, P., Murindangabo, Y.T., Ghorbani, M., Menšík, L., Dumbrovský, M., 2022. Fractionation of soil organic matter into labile and stable fractions. Agronomy 12(1), 73. https://doi.org/10.3390/agrono....
 
32.
Koutroubas, S.D., Antoniadis, V., Damalas, C.A., Fotiadis, S., 2016. Effect of organic manure on wheat grain yield, nutrient accumulation, and translocation. Agronomy Journal 108(2), 615–625. https://doi.org/10.2134/agronj....
 
33.
Lamar, R.T., Gralian, J., Hockaday, W.C., Jerzykiewicz, M., Monda, H., 2024. Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal. Frontiers in Plant Science 15, 1328006. https://doi.org/10.3389/fpls.2....
 
34.
Li-Xian, Y., Guo-Liang, L., Shi-Hua, T., Gavin, S., Zhao-Huan, H., 2007. Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Science of The Total Environment 383(1), 106–114. https://doi.org/10.1016/j.scit....
 
35.
Li, J., Zhao, J., Liao, X., Hu, P., Wang, W., Ling, Q., Xie, L., Xiao, J., Zhang, W., Wang, K., 2024. Pathways of soil organic carbon accumulation are related to microbial life history strategies in fertilized agroecosystems. Science of The Total Environment 927, 172191. https://doi.org/10.1016/j.scit....
 
36.
Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology 25(11), 3578–3590. https://doi.org/10.1111/gcb.14....
 
37.
Lim, S.L., Wu, T.Y., Lim, P.N., Shak, K.P.Y., 2015. The use of vermicompost in organic farming: Overview, effects on soil and economics. Journal of the Science of Food and Agriculture 95(6), 1143–1156. https://doi.org/10.1002/jsfa.6....
 
38.
Lin, H., 2011. Three principles of soil change and pedogenesis in time and space. Soil Science Society of America Journal 75(6), 2049–2070. https://doi.org/10.2136/sssaj2....
 
39.
Martin Thiagaraja, S., Govindaraji, S., Meena, S., Balachandar, D., Thangamani, C., Surendran, U., 2025. Carbon stability, clay mineral interactions, and organic matter in long-term fertilizer experiments. Communications in Soil Science and Plant Analysis 56(15), 2365–2376. https://doi.org/10.1080/001036....
 
40.
Mendonça, E.S., Rowell, D.L., 1996. Mineral and organic fractions of two Oxisols and their influence on effective cation-exchange capacity. Soil Science Society of America Journal 60(6), 1888–1892. https://doi.org/10.2136/sssaj1....
 
41.
Miller, J.J., Curtin, D., 2008. Electrical conductivity and soluble ions. [In] Carter, M.R., Gregorich, E.G. (Eds.), Soil Sampling and Methods of Analysis. CRC Press, Boca Raton, Florida, 161–171.
 
42.
Murugu, D.K., Onyango, A.N., Ndiritu, A.K., Osuga, I.M., Xavier, C., Nakimbugwe, D., Tanga, C.M., 2021. From farm to fork: Crickets as alternative source of protein, minerals, and vitamins. Frontiers in Nutrition 8, 704002. https://doi.org/10.3389/fnut.2....
 
43.
Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon, and organic matter. [In] Spark, D.L. (Ed.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Propterties. SSSA Book Ser. 5. SSSA, Madison, Wisconsin, 539–579.
 
44.
Noble, A.D., Gillman, G.P., Ruaysoongnern, S., 2000. A cation exchange index for assessing degradation of acid soil by further acidification under permanent agriculture in the tropics. European Journal of Soil Science 51(2), 233–243. https://doi.org/10.1046/j.1365....
 
45.
Noll, L., Zhang, S., Zheng, Q., Hu, Y., Wanek, W., 2019. Wide-spread limitation of soil organic nitrogen transformations by substrate availability and not by extracellular enzyme content. Soil Biology and Biochemistry 133, 37–49. https://doi.org/10.1016/j.soil....
 
46.
Obour, A., Stahlman, P., Thompson, C., 2017. Long-term residual effects of feedlot manure application on crop yield and soil surface chemistry. Journal of Plant Nutrition 40(3), 427–438. https://doi.org/10.1080/019041....
 
47.
Ozlu, E., Kumar, S., 2018. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Science Society of America Journal 82(5), 1243–1251. https://doi.org/10.2136/sssaj2....
 
48.
Pendleton, R.L., 1943. Land use in Northeastern Thailand. Geographical Review 33(1), 15–41. https://doi.org/10.2307/210616.
 
49.
Pincus, L.N., Ryan, P.C., Huertas, F.J., Alvarado, G.E., 2017. The influence of soil age and regional climate on clay mineralogy and cation exchange capacity of moist tropical soils: A case study from late quaternary chronosequences in Costa Rica. Geoderma 308, 130–148. https://doi.org/10.1016/j.geod....
 
50.
Quesada, C.A., Lloyd, J., Anderson, L.O., Fyllas, N.M., Schwarz, M., Czimczik, C.I., 2011. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8(6), 1415–1440. https://doi.org/10.5194/bg-8-1....
 
51.
Rahman, S.U., Han, J.-C., Ahmad, M., Ashraf, M.N., Khaliq, M.A., Yousaf, M., Wang, Y., et al., 2024. Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies. Ecotoxicology and Environmental Safety 269, 115791. https://doi.org/10.1016/j.ecoe....
 
52.
Rayne, N., Aula, L., 2020. Livestock manure and the impacts on soil health: A review. Soil Systems 4(4), 64. https://doi.org/10.3390/soilsy....
 
53.
Reading, A., Millington, A.C., Thompson, R.D., 1995. Humid Tropical Environments. Blackwell Publisher Inc., Cambridge, Massachusetts.
 
54.
Rillig, M.C., 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84(4), 355–363. https://doi.org/10.4141/S04-00.
 
55.
Rochmah, W., Mangkoedihardjo, S., 2020. Toxicity effects of organic substances on nitrification efficiency. IOP Conference Series: Earth and Environmental Science 506, 012011. https://doi.org/10.1088/1755-1....
 
56.
Roder, W., Schürmann, S., Chittanavanh, P., Sipaseuth, K., Fernandez, M., 2007. Soil fertility management for organic rice production in the Lao PDR. Renewable Agriculture and Food Systems 21(4), 253–260. https://doi.org/10.1079/RAF200....
 
57.
Sanchez, P.A., 2019. Properties and Management of Soils in the Tropics. Cambridge University Press, Cambridge.
 
58.
Sparks, D.L., 2003. Environmental Soil Chemistry. Academic Press, New York.
 
59.
Sposito, G., 2016. The Chemistry of Soils. Oxford University Press, Oxford.
 
60.
Sumner, M.E., Noble, A.D., 2003. Soil acidification: The world story. [In] Handbook of Soil Acidity. CRC Press, Boca Raton, Florida, 15–42.
 
61.
Suzuki, S., Noble, A.D., Ruaysoongnern, S., Chinabut, N., 2007. Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Research and Management 21(1), 37–49. https://doi.org/10.1080/153249....
 
62.
Ulery, A.L., Graham, R.C., Amrhein, C., 1993. Wood-ash composition and soil pH following intense burning. Soil Science 156(5), 358–364.
 
63.
United Nations, 2015. Transforming our world : The 2030 agenda for sustainable development. UN General Assembly A/RES/70/1, 1–35.
 
64.
van Huis, A., Itterbeeck, J.V., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P., 2013. Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations, Rome.
 
65.
Vityakon, P., 2007. Degradation and restoration of sandy soils under different agricultural land uses in Northeast Thailand: A review. Land Degradation and Developement 18(5), 567–577. https://doi.org/10.1002/ldr.79....
 
66.
Wang, D., Yi, W., Zhou, Y., He, S., Tang, L., Yin, X., Zhao, P., Long, G., 2021. Intercropping and N application enhance soil dissolved organic carbon concentration with complicated chemical composition. Soil and Tillage Research 210, 104979. https://doi.org/10.1016/j.stil....
 
67.
Wang, Y., Hu, N., Ge, T., Kuzyakov, Y., Wang, Z.-L., Li, Z., Tang, Z., Chen, Y., Wu, C., Lou, Y., 2017. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Applied Soil Ecology 111, 65–72. https://doi.org/10.1016/j.apso....
 
68.
Weil, R.R., Brady, N.C., 2017. The Nature and Properties of Soils. Pearson Education Limited, New York.
 
69.
Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T.M., Miltner, A., Schroth, G., 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79(1), 117–161. https://doi.org/10.1016/S0016-....
 
70.
Zelazny, L.W., He, L., Vanwormhoudt, A., 1996. Charge analysis of soils and anion exchange. [In] Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis. SSSA Book Series, Madison, Wisconsin, 1231–1253.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top