A complexity related to mapping and classification of urban soils (a case study of Bratislava city, Slovakia)
Jaroslava Sobocká 1  
,   Martin Saksa 1  
,   Ján Feranec 2  
,   Daniel Szatmári 2  
,   Monika Kopecká 2  
National Agriculture and Food Centre, Soil Science and Conservation Research Institute, Department of General Pedology and Pedogeography, Trenčianska 55, 821 09, Bratislava, Slovakia
Slovak Academy of Sciences, Institute of Geography, Štefánikova 49, 814 73, Bratislava, Slovakia
Martin Saksa   

Soil Science and Conservation Research Institute, National Agriculture and Food Centre, Trenčianska 55, 821 09, Bratislava, Slovak Republic
Data nadesłania: 15-06-2020
Data ostatniej rewizji: 03-09-2020
Data akceptacji: 15-09-2020
Data publikacji online: 01-10-2020
The issue of the urban soil survey, mapping and classifications (including urban soil diagnostics) seems to be not unified and standardized in the last time research. To contribute to the knowledge profound, we present procedure of the urban soil mapping which was based on the concept of pedo-urban complexes enabling to map urban soils in large or middle-sized scale. The mapping process includes the use of multiple background materials such as land cover/land use map, digital terrain model, satellite images, and soil survey results in the field. The example of this mapping method was demonstrated on Bratislava City in Slovak republic. The Slovak Morphogenetic Soil Classification system (MKSP 2014) and World Reference Base for Soil Resources (WRB 2015) was used for soil map unit’s classification. Concept of the pedo-urban complex (PUC) includes several mapping attributes: urban land use, mapping of soil sealing, mapping of soil units (prevailingly soil association) as well as technogenic substrates. This basis was completed by soil texture, and level of environmental risk. PUC can create some spatial pattern depending on urban land use. Other soil areas are delineated as natural soil types variously influenced by geomorphology or pedology setting. The result of this process is creation of the soil map of Bratislava City which consists of 1,478 areas with soil units. Soil map could be applied in urban planning processes, as very detailed information provided within the map. Also it can be showed some gaps in mapping which should be the topic of further discussions and studies.
Ad-hoc-AG-Boden, 2005. Bodenkundliche Kartieranleitung – 5. Auflage, Hannover, 438 pp. (in German).
Arbeitskreis Stadtboeden der Deutschen Bodenkundlichen Gesellschaft, 1997. Empfehlungen des Arbeitskreises Stadtboeden der Deutschen Bodenkundlichen Gesellschaft für die bodenkundliche Kartierung urban, gewerblich, industriell und montan überformter Flächen (Stadtboeden) (Recommendation of the WG Urban Soils of the German Soil Science Society for soil survey of urban, commercial and industrial areas). 2nd edition, part 1: field guide. Sekretariat buero fuer bodenbewertung, Rehsenweg 75, 24148 Kiel. (in German).
Blaize, D., 1998. A Sound Reference Base for Soil, the “referential pedologique”. INRA, Paris, 322 pp. (in English).
Bockheim, J.G., 1974. Nature and Properties of Highly Disturbed Urban Soils. Philadelphia, Pennsylvania. Paper presented before Div. S-5, Soil Science Society of America, Chicago, Illinois.
Bragina, P., Gerasimova, M., 2017. Why parent materials should be introduced into Technosol systematic? Abstract Book SUITMA 9, Moscow, 16–18.
Bullock, P., Gregory, P.J. (Eds.), 1991. Soils in the Urban Environment. Blackwell Scientific Publications.
Burghardt, W., 1994. Soils in urban and industrial environments. Zeitschrift für Pflanzenernährung und Bodenkunde 157(3), 205–214.
Burghardt, W., 2001. Soil of Low Age as Specific Features of Urban Ecosystem. Soil Anthropization VI., Proceedings of the International Workshop, Bratislava (20-22 June 2001), 11–17.
Burghardt, W., Morel, J.L., Zhang, G.L., 2015. Development of the soil research about urban, industrial, traffic, mining and military areas (SUITMA). Soil Science and Plant Nutrition 61(sup1), 3-21.
Certini, G., Scalenghe, R., 2011. Anthropogenic soils are the golden spikes for the Anthropocene. The Holocene 21(8), 1269–1274.
Craul, P.J., 1992. Urban Soil in Landscape Design. Wiley, 146 pp.
Craul, P.J., 1999. Urban Soils: Applications and Practices. Wiley, 384 pp.
Charzyński, P., Bednarek, R., Chmurzyński, M., 2011. Właściwości gleb tworzących się na budowlach miasta Torunia. [In:] Jankowski, M. (Eds.), Wybrane problemy genezy, systematyki, uźytkowania i ochrony gleb region kujawsko-pomorskiego. PTSH Wrocław, PTG Warszawa, 97–116. (in Polish).
Charzyński, P., Bednarek, R., Greinert, A., Hulisz, P., Uzarowicz, L., 2013. Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Science Annual 64(4), 145–150.
Charzyński, P., Hulisz, P., 2017. The case of Toruń, Poland. [In:] Levin, M.J. (Eds.), Soils within Cities. Schweizerbart Science Publisher.
Charzyński, P., Plak, A., Hanaka, A., 2017. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environmental Science and Pollution Research 24, 4801–4811.
De Kimpe C.R., Morel, J.-L., 2000. Urban Soil Management: A Growing Concern. Soil Science 165(1). 31–40. DOI: 10.1097/00010694-200001000-00005.
Deutschen Bodekundlichen Geselschaft, 1998. Systematik der Boden und der bodenbildenden Substrate Deutschlands. Band 86.
Fachhochschule Osnabrück, 2009. Funktionsbewertung urbaner Böden und planerische Umsetzung im Rahmen kommunaler Flächenschutzkonzeptionen – Stadtboden: Endbericht; REFINA Forschungsvorhaben. Technische Informationbibliothek u. Universitätsbibliothek, 249 pp.
Feranec, J., Holec, J., Šťastný, P., Szatmári, D., Kopecká, M., 2019a. Visualising a comparison of simulated urban heat islands: a case study of two Slovakian cities. Advances in Cartography and GIScience of the International Cartographic Association, 29th International Cartographic Conference (ICC), Tokyo (15-20 July 2019).
Feranec, J., Kopecká, M., Szatmári, D., Holec, J., Šťastný, P., Pazúr, R., Bobáľová, H., 2019b. A review of studies involving the effect of land cover and land use on urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie 124(1), 383–101.
Geological map of Slovakia M 1:50,000 [online]. Bratislava: Štátny geologický ústav Dionýza Štúra, 2013. Available on internet: (in Slovak).
Greinert, A., 2015. The heterogeneity of urban soils in the light of their properties. Journal of Soils and Sediments 15, 1725–1737.
Hernandez, L.A., Galbraith, J.M., 1997. USDA-NRCS. Soil Survey of LaTourette Park, Staten Island. USDA-Natural Resources Conservation Service, Lincoln, Nebraska and Cornell University.
Holland, K., Lehmann, A. & Stahr, K., 1997. Bodeninventur in Stuttgart. [In:] Blume, H.P., Schleuss, U., (Eds.), Bewertung anthropogener Stadtböden. Abschlussbericht des BMBF-Verbundvorhabens der Universitäten Berlin (TU), Halle-Wittenberg, Hohenheim, Kiel und Rostock sowie des „Büro für Bodenbewertung“, Kiel. Schriftenreihe Institut für Pflanzenernährung und Bodenkunde & Ökologie Zentrum, Universität Kiel 38, 281–307. (in German).
Hraško, J., Linkeš, V., Šály, R., Šurina, B., 1993. Soil Map of Slovakia 1:400 000. Soil Fertility Research Institute, Bratislava. (in Slovak).
Hulisz, P., Charzyński, P., Greinert, A., 2018. Urban soil resources of medium-sized cities in Poland: a comparative case study of Toruń and Zielona Góra. Journal of Soils and Sediments 18, 358–372.
Huot, H., Joyner, J., Córdoba, A., Shaw, R.K., Wilson, M.A., Walker, R., Muth, T.R. & Cheng, Z., 2017. Characterizing urban soils in New York City: profile properties and bacterial communities. Journal of Soils and Sediments 17, 393–407.
IUSS Working Group WRB, 2006. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103, FAO, Rome.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014. Update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report No. 106, FAO, Rome.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263. DOI: 10.1127/0941-2948/2006/0130.
Lehmann, A., Stahr, K., 2007. Nature and significance of anthropogenic urban soils. Journal of Soils and Sediments 7, 247–260.
Lehmann, A., 2009. Andears Lehmann, Susanne David, Karl Stahr: TUSEC – technique for soil evaluation and categorization for natural and anthropogenic soils. Volume 85, ‘Hohenheimer Bodenkundliche Hefte’. Journal of Soils and Sediments 9, 111.
Levin, M.J. et al., 2017. Soil within Cities (Global approaches to their sustainable management – composition, properties, and functions of soil of the urban environment). Schweizerbart Science Publishers.
Makowsky, L., 2009. Bewertung der Schwermetall-Mobilität von Stadtböden aus technogenen Substraten bei Elution von Bodensäulen im Dynamischen Batchtest. Shaker Verlag, Aachen. (in German).
Makowsky, L., Schneider, J., 2017. The case of Germany. [In:] Levin, M.J. et al. (Eds.), Soils within Cities. Schweizerbart Science Publishers.
Mazúr, E., Lukniš, M., 1980. Regional geomorphological delimitation 1:500 000. The Geographical Institute of the Slovak Academic of Sciences, Bratislava. (in Slovak).
Morel, J.L., Heinrich, A.B., 2008. SUITMA – soils in urban, industrial, traffic, mining and military areas. Journal of Soils and Sediments 8, 206–207.
Montanarella, L. et al., 2016. World's soils are under threat. Soil, 2, 79–82.
Pindral, S., Kot, R., Hulisz, P., Charzyński, P., 2020. Landscape metrics as a tool for analysis of urban pedodiversity. Land Degradation & Development.
Prokofyeva, T.V., Martynenko, I.A., Ivannikov, F.A., 2011. Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils. Eurasian Soil Science 44, 561.
Prokofyeva, T.V., Gerasimova, M.I., Bezuglova, O.S., Bakhmatova, K.A., Goľeva, A.A., Gorbov, S.N., Zharikova, E.A., Matinyan, N.N., Nakvasina, E.N. and Sivtseva , N.E., 2014. Inclusion of soils and Soil-like bodies of urban territories into the Russian soil classification system. Eurasian Soil Science 47, 959–967.
Prokofyeva, T.V., Martynenko, I.A., 2017. The case of Moscow, Russia. [In:] Levin, M.J., (Eds.), Soils within Cities. Schweizerbart Science Publisher.
Puskás, I., Farsang, A., 2009. Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma 148(3–4), 267–281.
Rossiter, D.G., 2007. Classification of urban and industrial soils in the World Reference Base for Soil Resources. Journal of Soils and Sediments 7, 96–100.
Schleuss, U., Wu, Q., Blume, H.-P., 1998. Variability of soils in urban and periurban areas in Northern Germany. Catena 33(3-4), 255-270.
Shaw R.K., Isleib J.T., 2017. The case of the New York City Soil Survey Program, United States. [In:] Levin, M.J. et al. (Eds.), Soils within Cities. Schweizerbart Science Publisher.
Shaw, R.K., Hernandez, L.A., Levin, M.J., Muñiz, E., 2018. Promoting soil science in the urban environment – partnerships in New York City, NY, USA. Journal of Soils and Sediments 18, 352–357.
Séré, G., Schwartz, C., Ouvrard, S., Sauvage, C., Renat, J.C., Morel, J.L., 2008. Soil construction: a step for ecological reclamation of derelict lands. Journal of Soils and Sediments 8, 130–136.
Sobocká, J., 2003. Urban Soils vs. Anthropogenic Soils, their Differentiation and Classification. Final Program and Abstracts Book, SUITMA International Conference (9 – 11 July, 2003), Nancy, France, 41–42.
Sobocká, J., 2007. Urbánne pôdy - príklad Bratislavy. (Urban soils - A Case Study of Bratislava). Soil Science and Conservation Research Institute, Bratislava, 2007, 174 pp. (in Slovak).
Sobocká, J., 2011. Návrh inovácie skupiny antropogennych pod v MKSP 2000 (definícia, diagnostika, klasifikácia) (A proposal of innovation of anthropogenic group in MKSP 2000 (definition, diagnostics, classification)). [In:] Sobocká, J., (Eds.), Diagnostika, klasifikácia a mapovanie pôd. Soil Science and Conservation Research Institute, Bratislava, 2011, 118–125. (in Slovak).
Societas pedologica slovaca, 2014. Morfogenetický klasifikačný system pôd Slovenska. Bazálna referenčná taxonómia (Morphogenetic Soil Classification System of Slovakia. Bazal Reference Taxonomy). The second revised edition. NPPC-VÚPOP, Bratislava, 96 pp. (in Slovak).
Soil Survey Staff, 2014. Keys to Soil Taxonomy. United States Department of Agriculture, Natural Resources Conservation Service, Twelfth Edition, 372 pp.
Stadt Stuttgart, 2016. Der Stuttgarter Bodenatlas (Soil Atlas of Stuttgart, 1:20 000). Stadt Stuttgart. Amt für Umweltschutz.
Stroganova, M.N., Miagkova, A.D., Prokofyeva, T.V., 1997. The role of soils in urban ecosystems. Eurasian Soil Science 30(1), 82-86.
Stroganova, M.N., Miagkova, A.D., Prokofyeva, T.V. and Skvortsova, I.N. 1998. Soils of Moscow and Urban Environment. PAIMS, Moscow, 178 pp.
Szatmári, D., Kopecká, M., Feranec, J., Sviček, M., 2018. Rozšírená legenda Urban Atlas 2012 (Extended nomenclature Urban Atlas 2012). Institute of Geography, Slovak Academy of Sciences, Bratislava. (in Slovak).
Tonkonogov, V.D., Lebedeva, I.I., 1999. A System for Categorizing Technogenic Surface Formations (Humanly Modified Soils). [In:] Kimble, J.M., Ahrens, R.J. and Bryant, R.B. (Eds.), Classification, Correlation and Management of Anthropogenic Soils. Proceedings Nevada and California Workshop. USDA-NRSC, National Soils Survey Centre, Lincoln, Nebraska, U.S., 186–189.
Vrščaj B., Poggio L., Ajmone Marsan F., 2008. A method for soil environmental quality evaluation for management and planning in urban areas. Landscape and Urban Planning 88(2-4), 81–94.