PL EN
PRACA PRZEGLĄDOWA
Metodologiczne problemy z klasyfikacją i pomiarami w glebach zawierających węglany
 
Więcej
Ukryj
1
Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University in Lublin, Polska
 
2
Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University in Toruń, Polska
 
3
Faculty of Geography and Geology, Institute of Geography and Spatial Management, Jagiellonian University, Polska
 
4
Institute of Soil Science and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Polska
 
5
Faculty of Agriculture and Forestry, Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Polska
 
6
LLC Company, Energy Composites, Polska
 
7
Department of Natural Environment Biogeochemistry, Institute of Agrophysics PAS, Polska
 
 
Data nadesłania: 01-09-2021
 
 
Data ostatniej rewizji: 06-12-2021
 
 
Data akceptacji: 14-04-2022
 
 
Data publikacji online: 14-04-2022
 
 
Autor do korespondencji
Andrzej Bieganowski   

Department of Natural Environment Biogeochemistry, Institute of Agrophysics PAS, Polska
 
 
Soil Sci. Ann., 2022, 73(1)149235
 
SŁOWA KLUCZOWE
STRESZCZENIE
Gleby zawierające węglany są powszechnie i występują w różnych rejonach na całym świecie. Zawartość węglanów w takich glebach różna i waha się od kilku do kilkudziesięciu procent. Zależy przede wszystkim od charakteru skały macierzystej oraz procesów glebotwórczych, którym dana gleba podlegała / podlega. W niektórych przypadkach na zawartość węglanów wpływa domieszka materiału allochtonicznego (antropogenicznego i / lub naturalnego). Gleby zawierające węglany często mogą być problematyczne zarówno w zakresie ich klasyfikacji jak również analizy. Przy klasyfikowaniu gleb zawierających węglany ważne jest rozróżnienie między węglanami pierwotnymi i wtórnymi oraz uwzględnienie obecności węglanowych części szkieletowych. Oznaczenie zawartości węglanów w glebie zależy od ich charakteru – biorąc to pod uwagę poszczególne procedury analityczne mogą różnić się w zależności od ich składu chemicznego. Węglany, ze względu na interakcje między poszczególnymi substancjami, mogą generować problemy metodologiczne przy określaniu wybranych cech gleb. Dotyczy to właściwości fizycznych, takich jak skład granulometryczny, ale także określania cech mikromorfologicznych. Węglany mają również wpływ na wyniki analizy węgla organicznego, zwłaszcza w świetle rozwoju nowoczesnych technik pomiarowych. W niniejszej pracy podjęto próbę zebrania powszechnych problemów związanych z systematyką i analizą gleb zawierających węglany oraz zaprezentowano zastosowane rozwiązania. Wierzymy, że ten artykuł będzie pomocny dla tych osób, które zajmują się glebami węglanowymi.
 
REFERENCJE (83)
1.
Al-Mamoori, S.K., Al-Maliki, L.A.J., El-Tawel, K., Hussain, H.M., Al-Ansari, N., Al Ali, M.J., 2019. Chloride, calcium carbonate and total soluble salts contents distribution for An-Najaf and Al-Kufa Cities’ soil by using GIS. Geotechnical and Geological Engineering 37, 2207–2225. https://doi.org/10.1007/s10706....
 
2.
Asgari Hafshejani, N., Jafari, S., 2017. The study of particle size distribution of calcium carbonate and its effects on some soil properties in Khuzestan province. Iran Agricultural Research 36(2), 71–80. https://doi.org/10.22099/IAR.2....
 
3.
Bartkowiak, A., 2011. Texture of the mineral part of heterogenic carbonate deposits and their chemical composition based on the Unisławski Basin soils. Soil Science Annual 62(4), 199–210. (in Polish with English summary).
 
4.
Bartmiński, P., Krusińska, A., Bieganowski, A., Ryżak, M., 2011. Preparation of soil samples for grain size distribution analysis using the laser diffraction method. Soil Science Annual 62(2), 9–15. (in Polish with English summary).
 
5.
Batjes, N. H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47, 151–163.
 
6.
Bell, F.G., 2005. Engineering Geology. Problematic Rocks. [In:] Selley, R.C., Cocks, L.R.M., Plimer I.R. (Eds.), Encyclopedia of Geology. Elsevier, Amsterdam, 543–554.
 
7.
Bieganowski, A., Ryżak, M., Sochan, A., Makó, A., Barna, G., Hernádi, H., Beczek, M., Polakowski, C., 2018. Laser diffractometry in the measurements of soil and sediment particle size distribution. Advances in Agronomy 151, 215–279. https://doi.org/10.1016/bs.agr....
 
8.
Brogowski, Z., Chojnicki, J., 2013. Distribution of organic matter and nitrogen in the particle size fractions of genetic horizons in Dystric Cambisols in the Kabacki Forest. Sylwan 157(6), 470–480.
 
9.
Bughio, M.A., Wang, P., Meng F., Chen Q., Li, J., Shaikh, T.A., 2017. Neoformation of pedogenic carbonate and conservation of lithogenic carbonate by farming practices and their contribution to carbon sequestration in soil. Journal of Plant Nutrition and Soil Science 180, 454–463. https://doi.org/10.1002/jpln.2....
 
10.
Burt, R., 2004. Soil Survey Laboratory Investigations Report No. 42. Natural Resources Conservation Service, Lincoln, Nebraska (USA), 269–273.
 
11.
Czermiński, J., 1955. W sprawie klasyfikacji i nomenklatury skał osadowych. Przegląd Geologiczny 4, 395–407. (in Polish).
 
12.
Dhillon, G. S., Amichev, B. Y., de Freitas, R., Van Rees, K., 2015. Accurate and precise measurement of organic carbon content in carbonate-rich soils. Communications in Soil Science and Plant Analysis 46(21), 2707–2720. https://doi.org/10.1080/001036....
 
13.
Dobak, P., Wyrwicki, P., 2000. Impermeable properties of lacustrine chalk. Przegląd Geologiczny 48(5), 412–415. (in Polish with English summary).
 
14.
Dobrzański B., Konecka-Betley K., Kuźnicki F., Turski R., 1987. Rędziny Polski. Roczniki Nauk Rolniczych seria D 208, 143. (in Polish with English abstract).
 
15.
Drewnik, M., Żyła, M. 2019. Properties and classification of heavily eroded post-chernozem soils in Proszowice Plateau (southern Poland). Soil Science Annual 70(3), 225–233. https://doi.org/10.2478/ssa-20....
 
16.
Duchaufour, P., 1976. Dynamics of organic matter in soils of temperate regions: Its action on pedogenesis, Geoderma 15(1) 31–40. https://doi.org/10.1016/0016-7....
 
17.
Durand, N., Monger, H.C., Canti, M., 2010. Calcium carbonate features. [In:] Stoops, G., Marcelino V., Mees, F. (Eds.), Interpretation of micromophological features of soils and regolits. Elsevier, Amsterdam, Oxford, 149–194. https://doi.org/10.1134/S10642....
 
18.
EN ISO 15936:2012. Sludge, treated biowaste, soil and waste - Determination of total organic carbon (TOC) by dry combustion.
 
19.
EN ISO 10693:2014. Determination of carbonate content - Volumetric method.
 
20.
EN ISO 11277:2020. Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation.
 
21.
Eshel, G., Fine P., Singer, M.J., 2007. Total soil carbon and water quality: An implication for carbon sequestration. Soil Science Society of America Journal 71, 397–405.
 
22.
FAO, 2020. Standard operating procedure for soil calcium carbonate equivalent. Volumetric calcimeter method. FAO, Rome, 17.
 
23.
Ferreira, E.P., Anjos, L.H.C. dos Pereira, M.G., Valladares, G.S., Cipriano-Silva, R., Azevedo, A.C., 2016. Genesis and classification of soils containing carbonate on the Apodi Plateau, Brazil. Revista Brasileira de Ciência do Solo 40. https://doi.org/10.1590/180696....
 
24.
FitzPatrick, E.A., 1984. Micromorphology of Soils. Chapman and Hall, London, 433 pp.
 
25.
Guo, Y., Wang, X., Li, X., Wang, J., Xu, M., Li, D., 2016. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China. Scientific Reports 6, 36105. https://doi.org/10.1038/srep36....
 
26.
Gras, P., 1972. Preliminary Results of Lysimeter Studies on the Dynamics of Calcium in the Irrigated Calcareous Soils of South Lebanon. FAO Soils Bulletin 2–Calcareous Soils. FAO, Rome.
 
27.
Harris, D., Horwath, W.R., van Kessel, C., 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal 65, 1853–1856.
 
28.
Hemkemeyer, M., Dohrmann, A.B., Christensen, B.T., Tebbe, C.C., 2018. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Frontiers in Microbiology 9, 149.
 
29.
IUSS Working Group WRB, 2015. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report No. 106. FAO, Rome.
 
30.
Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O., Schad, P., 2006. Guidelines for soil description. 4th ed., FAO, Rome, Italy.
 
31.
Jenčo, M., Fulajtár, E., Bobáľová, H., Matečný, I., Saksa, M., Kožuch, M., Gallay, M., Kaňuk, J., Píš, V., Oršulová, V., 2020. Mapping soil degradation on arable land with aerial photography and erosion models, case study from Danube Lowland, Slovakia. Remote Sensing 12(24), 4047. https://doi.org/10.3390/rs1224....
 
32.
Kacprzak, A., Drewnik, M., Uzarowicz, Ł., 2006. Rozwój i kierunki przemian węglanowych gleb rumoszowych na terenie Pienińskiego parku Narodowego. Pieniny–Przyroda i Człowiek 9, 41–50.
 
33.
Kaszubkiewicz, J., Papuga, K., Kawałko, D., Woźniczka, P., 2020. Particle size analysis by an automated dynamometer method integrated with an x-y sample changer. Measurement 157, 107680. https://doi.org/10.1016/j.meas....
 
34.
Klimowicz, Z., Uziak, S., 2001. The influence of long-term cultivation on soil properties and patterns in an undulating terrain in Poland. Catena 43, 177–189. https://doi.org/10.1016/S0341-....
 
35.
Konecka-Betley, K., 1976. Relic soils formed of carbonate rocks in the environs of the Świętokrzyskie Mts. Soil Science Annual 27(2), 49–71. (in Polish).
 
36.
Kovda, I., Mermut, A., 2010. Vertic features. [In:] Stoops G, Marcelino V, Mees F (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, 109–127. https://doi.org/10.1016/C2009-....
 
37.
Kowaliński, S., Licznar, E., 1986. Humus compounds in rendzina soils formed out of limestones of different geological formations. Roczniki Gleboznawcze – Soil Science Annual 37(2–3), 159–167. (in Polish with English summary).
 
38.
Kowalska, J., Kajdas, B. Zaleski, T., 2017. Variability of morphological, physical and chemical properties of soils derived from carbonate-rich parent material in the Pieniny Mountains (south Poland). Soil Science Annual 68(1), 27–38. https://doi.org/10.1515/ssa-20....
 
39.
Kowalska, J.B., Zaleski, T., Józefowska, A., Mazurek, R., 2019. Soil formation on calcium carbonate-rich parent material in the outer Carpathian Mountains – A case study. Catena 174, 436–451. https://doi.org/10.1016/j.cate....
 
40.
Kowalska, J.B., Zaleski, T., Mazurek, R., 2020a. Micromorphological features of soils formed on calcium carbonate–rich slope deposits in the Polish Carpathians. Journal of Mountain Science 17(6), 1310–1332. https://doi.org/10.1007/s11629....
 
41.
Kowalska, J.B., Kajdas, B., Zaleski, T., 2020b. Lithological indicators of discontinuities in mountain soils rich in calcium carbonate in the Polish Carpathians. Journal of Mountain Science 17(5), 1058–1083. https://doi.org/10.1007/s11629....
 
42.
Kuźnicki, F., Skłodowski, P., 1976. Content and characteristics of the forms of humus compounds in rendzinas developed from carbonate rocks of different geological age. Soil Science Annual 27(2), 127–136. (in Polish with English summary).
 
43.
Lal, R., Kimble, J.M., Stewart B., Eswaran, H., 1999. Global climate change and pedogenic carbonates. CRC Press, 325.
 
44.
Lamorski, K., Pastuszka, T., Krzyszczak, J., Sławiński, C., Witkowska-Walczak, B., 2013. Soil water dynamic modeling using the physical and support vector machine methods. Vadose Zone Journal 12(4). https://doi.org/10.2136/vzj201....
 
45.
Landi A., Mermut A.R., Anderson, D.W. 2004. Carbon distribution in a hummocky landscape from Saskatchewan, Canada. Soil Science Society of America Journal 68, 175–184.
 
46.
Lemkowska, B., Sowiński, P., 2008. Evolution of the post-lake rendzinas in the Masurian Lakeland. Soil Science Annual 59(1), 134–140. (in Polish with English abstract).
 
47.
Lemkowska, B., Sowiński, P., 2018. Limnic Rendzinas in the Masurian Lakeland (NE Poland). Soil Science Annual 69(2), 109–120. https://doi.org/10.2478/ssa-20....
 
48.
Loeppert, R.H., Suarez D.L., 1996. Carbonate and gypsum. [In:] Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston C. T., Sumner M. E. (Eds.), Methods of Soil Analysis: Part 3 Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy. 437–474.
 
49.
Makó, A., Szabó, B., Rajkai, K., Szabó, J., Bakacsi, Z., Labancz, V., Hernádi, H., Barna, G., 2019. Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. International Agrophysics 33, 445–454. https://doi.org/10.31545/intag....
 
50.
Markiewicz, M., 2012. Pedoarcheologiczne badania na wybranych stanowiskach archeologicznych ziemi chełmińskiej. Warszawa, Polskie Towarzystwo Gleboznawcze, 98.
 
51.
Matecka, P., Świtoniak, M., 2020. Delineation, characteristic and classification of soils containing carbonates in plow horizons within young moraine areas. Soil Science Annual 71, (1) 23–36. https://doi.org/10.37501/soils....
 
52.
Menzies, J., Meer, J.J.M., 2018. Micromorphology and microsedimentology of glacial sediments, Past Glacial Environments: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0....
 
53.
Miklaszewski, S., 1930. Soils of Poland. Państwowy Bank Rolny. (in Polish).
 
54.
Murphy, C.P., 1986. Thin Section Preparation of Soils and Sediments. AB Academic, Berkhamstead, 149.
 
55.
Olsen, S.R., and Sommers, L.E., 1982. Phosphorus. [In:] Page, A.L. et al. (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties. Agronomy Monographs. Second Edition, Madison, WI., 403–430. https://doi.org/10.2134/agronm....
 
56.
Pansu, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer-Verlag, Berlin Heidelberg, 993.
 
57.
Podlasiński, M., 2013. Wpływ denudacji antropogenicznej na zróżnicowanie pokrywy glebowej i jej przestrzenną strukturę w rolniczym krajobrazie morenowym, Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, Szczecin.
 
58.
Polish Soil Classification – Systematyka Gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy, Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław-Warszawa, 290. (in Polish with English summary).
 
59.
Ramnarine, R., Voroney, R. P., Wagner-Riddle, C., Dunfield, K. E., 2011. Carbonate removal by acid fumigation for measuring the δ13C of soil organic carbon. Canadian Journal of Soil Science 91, 247– 250. https://doi.org/10.4141/CJSS10....
 
60.
Razzaghi, F., Arthur, E., Moosavi, A.A., 2021. Evaluating models to estimate cation exchange capacity of calcareous soils. Geoderma 400, 115221. https://doi.org/10.1016/j.geod....
 
61.
Schüller H., 1969. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Zum Pflanzenernährrung Bodenkunde, 123, 48–63.
 
62.
Sohaib, N., Faiz, M.S., Sana, G., 2018. Use of Acrylic polymer for stabilization of clayey soil. International Journal of Scientific and Engineering Research 9, 433–438.
 
63.
Soil Science Division Staff, 2017. Soil survey manual. [In:] Ditzler, C. K. Scheffe, K., Monger, H. C. (Eds.), USDA Handbook 18. Government Printing Office, Washington, D.C., USA, 604.
 
64.
Soil Survey Staff, 2014. Kellogg Soil Survey Laboratory Methods Manual. [In:] Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (Eds.), U.S. Department of Agriculture, Natural Resources Conservation Service.
 
65.
Spychalski, W., Grzebisz, W., Diatta, J., Kostarev, D., 2018. Humus stock degradation and its impact on phosphorus forms in arable soils–a case of the Ukrainian Forest-Steppe Zone. Chemical Speciation and Bioavailability 30, 33-46. https://doi.org/10.1080/095422....
 
66.
Srivastava, P., Bhattacharyya, T., Pal, D.K., 2002. Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (Vertisols) of India. Clays and Clay Minerals 50, 111–126. https://doi.org/10.1346/000986....
 
67.
Srivastava, P., Pal, D.K., Kalbande, A.R., 2009. Soil micromorphology and its usefulness in soil survey. [In:] Bhattacharyya, T., Sarkar, D., Pal, D.K. (Eds.) Soil Survey Manual, NBSS&LUP, Publication No. 146, India, 400.
 
68.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116, 173–184. https://doi.org/10.1016/j.cate....
 
69.
Polish Soil Classification (Systematyka Gleb Polski), 1989. Roczniki Gleboznawcze – Soil Science Annual 40(3/4), 1–150. (in Polish with English summary).
 
70.
Szypłowska, A., Lewandowski, A., Jones, S.B., Sabouroux, P., Szerement, J., Kafarski, M., Wilczek, A., Skierucha, W., 2019. Impact of soil salinity, texture and measurement frequency on the relations between soil moisture and 20 MHz–3 GHz dielectric permittivity spectrum for soils of medium texture. Journal of Hydrology 579, 124155. https://doi.org/10.1016/j.jhyd....
 
71.
Tkaczyk, P., Bednarek, W., Dresler, S., Krzyszczak, J., Baranowski, P., Sławiński, C., 2017. Relationship between assimilable nutrient content and physicochemical properties of topsoil. International Agrophysics 31(4), 551–562. https://doi.org/10.1515/intag-....
 
72.
van Reeuwijk, L., 2002. Procedures for Soil Analysis. 6th Edition, ISRIC, FAO, Wageningen.
 
73.
Vinduskova, O., Jandova, K., Frouz, J., 2019. Improved method for removing siderite by in situ acidification before elemental and isotope analysis of soil organic carbon. Journal of Plant Nutrition and Soil Science 182, 82–91. https://doi.org/10.1002/jpln.2....
 
74.
Waroszewski, J., Sprafke, T., Kabała, C., Kobierski, M., Kierczak, J., Musztyfaga, E., Loba, A., Mazurek, R., Łabaz, B., 2019. Tracking textural, mineralogical and geochemical signatures in soils developed from basalt-derived materials covered with loess sediments (SW Poland). Geoderma 337, 983–997. https://doi.org/10.1016/j.geod....
 
75.
West, L.T., Drees, L.R., Wilding, L.P., Rabenhorst, M.C., 1988. Differentiation of Pedogenic and Lithogenic Carbonate Forms in Texas. Geoderma 43, 271–287.
 
76.
Widomski, M.K., Stępniewski, W., Horn, R., Bieganowski, A., Gazda, L., Franus, M., Pawłowska, M., 2015. Shrink-swell potential, hydraulic conductivity and geotechnical properties of clay materials for landfill liner construction. International Agrophysics. 29, 365–375. https://doi.org/10.1515/intag-....
 
77.
Wolińska, A., Stępniewska, Z., Szafranek-Nakonieczna, A., 2011. Effect of selected physical parameters on respiration activities in common Polish mineral soils. Polish Journal of Environmental Studies 20(4), 1075–1082.
 
78.
Woźnica, K., Józefowska, A., Sokołowska, J., Mazurek, R., Zaleski, T., 2019. Classification of brown earths based on field and laboratory properties: problematic issues and proposition of their solution. Polish Journal of Soil Science 52(2), 225–233. https://doi.org/10.17951/pjss/....
 
79.
Yaalon, D.H., 1957. Problems of soil testing on calcareous soils. Plant and Soil 8(3), 275–288.
 
80.
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016a. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews 157, 1–17. https://doi.org/10.1016/j.ears....
 
81.
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016b. Recrystallization of shell carbonate in soil: 14C labeling, modeling and relevance for dating and paleo-reconstructions. Geoderma 282, 87–95. https://doi.org/10.1016/j.geod....
 
82.
Žížala, D., Juřicová, A., Zádorová, T., Zelenková, K., Minařík, R., 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing 52, S1, 108–122. https://doi.org/10.1080/227972....
 
83.
Żyła, M., 2007. Ewolucja gleb erodowanych w obszarach lessowych. PhD Thesis (manuscript), IGiGP UJ.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top