PL EN
PRACA ORYGINALNA
Ocena Przydatności Gruntów na Podstawie Badań Profilu Glebowego w Podnóżu Siruvani w Zachodnich Gatach w Tamil Nadu, Indie
 
Więcej
Ukryj
1
Division of Soil Science, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India
 
Zaznaczeni autorzy mieli równy wkład w przygotowanie tego artykułu
 
 
Data nadesłania: 07-03-2025
 
 
Data ostatniej rewizji: 04-09-2025
 
 
Data akceptacji: 07-12-2025
 
 
Data publikacji online: 07-12-2025
 
 
Data publikacji: 30-12-2025
 
 
Autor do korespondencji
Balaganesh Balashanmugavel   

Assistant Professor / Division of Soil Science / School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Karunya Nagar, 641114, Coimbatore, India
 
 
Soil Sci. Ann., 2026, 77(1)
 
SŁOWA KLUCZOWE
STRESZCZENIE
The aim of this study was to investigate the morphological, physical, and chemical characteristics of soils occurring in the North Farm of Karunya Campus, located in the Coimbatore district of Tamil Nadu, within the Coimbatore Plateau physiographic region. Three representative soil profiles were excavated and analysed to assess soil development, classification, and agricultural suitability. The study area is underlain by deep Quaternary alluvium deposits exceeding 30 meters, with soils found on gently sloping terrain (1–3%). Five distinct horizons were identified in the profiles: Ap, Bw, Bwk1, Bwk2, and Bwk3. The presence of calcium carbonate (CaCO3) nodules in the Bwk horizons confirmed secondary carbonate accumulation. The soil texture was predominantly sandy clay loam, with increasing clay and silt content at depth. The soil structure ranged from angular and subangular blocky in the surface layers to massive and single-grain in the deeper horizons. The soils were well-drained, slightly to moderately alkaline (pH 7.9–9.1), and non-saline (EC < 1 dS m-1). The total organic carbon (TOC) content was higher in the surface layer and decreased gradually with depth. Available nitrogen, phosphorus, and potassium were also concentrated in the surface horizon. Cation exchange capacity ranged from 10.7 to 18.3 cmol (P⁺) kg-1, and base saturation increased with depth. The soils were classified as fine-loamy, mixed, isohyperthermic, Typic Calciustepts (Inceptisols) according to the USDA Soil Taxonomy, and as Calcic Cambisol (Loamic) based on the World Reference Base for Soil Resources. The soils were rated as Class II under the Land Capability Classification (LCC), indicating cultivable land with minor limitations, and as S2 under the Land Suitability Classification (LSC), reflecting moderate constraints for crop production. The Storie index value ranged between 59 and 66%, with a mean of 62.2%, placing the soil in the “good” category, which highlights its potential for productive agriculture with appropriate management interventions.
REFERENCJE (50)
1.
AbdelRahman, M.A., Natarajan, A., Hegde, R., 2016. Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. The Egyptian Journal of Remote Sensing and Space Science 19(1), 125–141. https://doi.org/10.1016/j.ejrs....
 
2.
Agriculture Organization of the United Nations. Soil Resources and Conservation Service. 1976. A framework for land evaluation Vol. 32. Bernan Press.
 
3.
Alaboz, P., Senol, H., Dengiz, O., 2022. Geochemical and mineralogical processes leading to variation of soil characteristics on calcareous toposequence in semiarid ecosystem condition. Rendiconti Lincei. Scienze Fisiche e Naturali 33(4), 903–921. https://doi.org/10.1007/s12210....
 
4.
Amir Shenava, S., Osanloo, M., 2021. Mined land suitability assessment: a semi-quantitative approach based on a new classification of post-mining land uses. International Journal of Mining, Reclamation and Environment 35(10), 743–763. https://doi.org/10.1080/174809....
 
5.
Ayam, G.P., Reddy, G., Kumar, N., Singh, S.K., Sahu, K.K., Shrivastava, G.K., Deshmukh, B.L., 2020. Characterization of soils of Jagdalpur in a topo-sequence. International Journal of Chemical Studies 8(1), 1001–1007. https://doi.org/10.22271/chemi....
 
6.
Bagherzadeh, A., Mansouri Daneshvar, M.R., 2011. Physical land suitability evaluation for specific cereal crops using GIS at Mashhad Plain, Northeast of Iran. Frontiers of Agriculture in China 5, 504–513. https://doi.org/10.1007/s11703....
 
7.
Bockheim, J.G., Gennadiyev, A.N., Hammer, R.D., 2020. Anthropogenic influences on soil genesis and classification. Geoderma 368, 114277.
 
8.
Brevik, E.C., Hartemink, A.E., 2010. Early soil knowledge and the basis for soil science. Catena 83(1), 23–33. https://doi.org/10.1016/j.cate....
 
9.
Brevik, E.C., Calzolari, C., Miller, B.A., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A., 2016. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 425, 116002. http://dx.doi.org/10.1016/j.ge....
 
10.
Chendev, Y.G., Novykh, L.L., Sauer, T.J., Petin, A.N., Zazdravnykh, E.A., Burras, C.L., 2014. Evolution of soil carbon storage and morphometric properties of afforested soils in the US Great Plains. Soil Carbon. pp. 475–482. https://doi.org/10.1007/978-3-....
 
11.
Churchward, H.M., 1961. Soil studies at Swan Hill, Victoria, Australia. https://doi.org/10.1071/SR9630....
 
12.
District survey report for granite Coimbatore district, 2019. Gazette Notification S.O.3611 (E). Ministry of Environment, Forest and Climate Change.
 
13.
Długosz, J., Piotrowska-Długosz, A., Siwik-Ziomek, A., Figas, A., 2022. Depth-related changes in soil P-acquiring enzyme activities and microbial biomass: The effect of agricultural land use/plant cover and pedogenic processes. Agriculture 12(12), 2079. https://doi.org/10.3390/agricu....
 
14.
Durand, N., Monger, H.C., Canti, M.G., Verrecchia, E.P., 2018. Calcium carbonate features. In: Interpretation of micromorphological features of soils and regoliths, pp. 205–258. Elsevier. https://doi.org/10.1016/B978-0....
 
15.
FAO (Food and Agriculture Organization), 2007. Land Evaluation: Towards a Revised Framework; Land and Water Discussion Paper 6; FAO: Rome, Italy, p. 107. https://doi.org/10.1016/j.geod....
 
16.
Fedenko, J., D'Amore, D., Spinola, D., Portes, R., Dere, A., Lybrand, R.A., 2024. Spodosol development and soil organic carbon distribution along a lithosequence in perhumid coastal temperate rainforest. Soil Science Society of America Journal 88(5), 1509–1528. https://doi.org/10.1002/saj2.2....
 
17.
Girmay, G., Sebnie, W., Reda, Y., 2018. Land capability classification and suitability assessment for selected crops in Gateno watershed, Ethiopia. Cogent Food and Agriculture 4(1), 1532863. https://doi.org/10.1080/233119....
 
18.
Halder, J.C., 2013. Land suitability assessment for crop cultivation by using remote sensing and GIS. Journal of Geography and Geology 5(3), 65–74. http://dx.doi.org/10.5539/jgg.....
 
19.
Hartemink, A.E., Zhang, Y., Bockheim, J.G., Curi, N., Silva, S.H.G., Grauer-Gray, J., Krasilnikov, P., 2020. Soil horizon variation: A review. Advances in Agronomy 160(1), 125–185. https://doi.org/10.1016/bs.agr....
 
20.
IUSS Working Group WRB, 2022. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edn. International Union of Soil Sciences, Vienna, Austria.
 
21.
Jackson, M.L., 1973. Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi, India, 498, 151–154.
 
22.
Jenny, H., 1941. Factors of soil formation: A system of quantitative pedology. McGraw-Hill.
 
23.
Jimenez-Ballesta, R., Perez-de-los-Reyes, C., Bravo, S., Gómez-Magan, A., Amorós, J. A., García-Navarro, F.J., 2024. Delineating the significance of sharp boundaries between horizons and their synergetic linkage in calcareous vineyard soils. Discover Applied Sciences 6(4), 164. https://doi.org/10.1007/s42452....
 
24.
Johnson, D.L., Watson-Stegner, D., 1987. Evolution model of pedogenesis. Soil Science 143, 349–366.
 
25.
Khalidy, R., Arnaud, E., Santos, R.M., 2022. Natural and human-induced factors on the accumulation and migration of pedogenic carbonate in soil: A review. Land 11(9), 1448. https://doi.org/10.3390/land11....
 
26.
Kılıc, O.M., Ersayın, K., Gunal, H., Khalofah, A., Alsubeie, M.S., 2022. Combination of fuzzy-AHP and GIS techniques in land suitability assessment for wheat (Triticum aestivum) cultivation. Saudi Journal of Biological Sciences 29(4), 2634–2644. https://doi.org/10.1016/j.sjbs....
 
27.
Kome, G.K., Enang, R.K., Yerima, B.P.K., 2021. Soil organic carbon distribution in a humid tropical plain of Cameroon: Interrelationships with soil properties. Applied and Environmental Soil Science 2021(1), 6052513. https://doi.org/10.1155/2021/6....
 
28.
Kowalska, J.B., Skiba, M., Maj-Szeliga, K., Mazurek, R., Zaleski, T., 2021. Does calcium carbonate influence clay mineral transformation in soils developed from slope deposits in Southern Poland? Journal of Soils and Sediments 21, 257–280. https://doi.org/10.1007/s11368....
 
29.
Minasny, B., McBratney, A.B., Malone, B.P., 2016. Digital soil morphometrics. Geoderma 264, 179–186. https://doi.org/10.1007/978-3-....
 
30.
Olsen, S.R., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
 
31.
Piper, C.S., 2019. Soil and plant analysis. Scientific Publishers.
 
32.
Shaw, C.F., 1928. A glossary of soil terms. Soil Science Society of America Journal 9(B), 23–27.
 
33.
Silva, S.H.G., Hartemink, A.E., Curi, N., 2021. Anthropogenic influences on soil horizons: A review. Soil Use and Management 37(2), 150–162.
 
34.
Simonson, R.W., 1959. Outline of a generalized theory of soil genesis. Soil Science Society of America Journal 23, 152–156.
 
35.
Soil Survey Manual, Examination and Description of Soil Profiles. 2018. USDA, Washington DC, USA.
 
36.
Soil Survey Staff, 2014. Keys to Soil Taxonomy (12th ed.). USDA-National Resource Conservation Service, Washington DC, USA.
 
37.
Steinbergs, A., 1955. A method for the determination of total sulphur in soils. Analyst 80(951), 457-461. https://doi.org/10.1039/AN9558....
 
38.
Storie, R.E., 1978. Storie index rating. Oakland, University of California Division of Agricultural Sciences, Special Publication 3203.
 
39.
Subbiah, B.V., Asija, G.L., 1956. A rapid procedure for the estimation of available nitrogen in soils. https://doi.org/10.1007/BF0135....
 
40.
Sujatha, D.V., Naidu, M.V.S., Bhaskar, B.P., Subramanyam, D., Reddy, B.R., Krishna, T.G., 2021. Relation of soil properties to landscape position: A transect study in a part of Pinneru River basin, YSR Kadapa district, Andhra Pradesh. Arabian Journal of Geosciences 14(16), 1648. https://doi.org/10.1007/s12517....
 
41.
Surwase, S.A., Singh, S.K., Reddy, G.P., Kadu, P.R., Mohekar, D.S., Naitam, R.K., Deshmukh, P.S., 2023. Characterization and classification of soils in a toposequence of the semi-arid basaltic landscape of Western India. International Journal of Plant and Soil Science 35(19), 876–887. https://doi.org/10.9734/ijpss/....
 
42.
Tan, C.S., Drury, C.F., Soultani, M., Van Wesenbeeck, I.J., Ng, H.Y.F., Gaynor, J.D., Welacky, T.W., 1998. Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the field scale. Water Science and Technology 38(4-5), 103–110. https://doi.org/10.1016/S0273-....
 
43.
Toth, S.J., Prince, A.L., 1949. Estimation of cation-exchange capacity and exchangeable Ca, K, and Na contents of soils by flame photometer techniques. Soil Science 67(6), 439–446. https://doi.org/10.1097/000106....
 
44.
Vasu, D., Srivastava, R., Patil, N.G., Tiwary, P., Chandran, P., Singh, S.K., 2018. A comparative assessment of land suitability evaluation methods for agricultural land use planning at the village level. Land Use Policy 79, 146–163. https://doi.org/10.1016/j.land....
 
45.
Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1), 29–38. http://dx.doi.org/10.1097/0001....
 
46.
Wang, X., Wang, J., Xu, M., Zhang, W., Fan, T., Zhang, J., 2015. Carbon accumulation in arid croplands of northwest China: Pedogenic carbonate exceeding organic carbon. Scientific Reports 5(1), 11439. https://doi.org/10.7209/carbon....
 
47.
Warhade, R.M., Karthikeyan, K., Tiwary, P., Naitam, R.K., Kumar, N., 2022. Characterization and classification of some typical cotton-growing soils of Samudrapur block of Wardha district, Maharashtra. Journal of the Indian Society of Soil Science 70(2), 142–148. http://dx.doi.org/10.5958/0974....
 
48.
Weerasekara, M., Hartemink, A.E., Zhang, Y., Stevenson, A., 2024. Spectral signatures of soil horizons and soil orders from Wisconsin. Soil Science Society of America Journal 88(6), 2013–2030. https://doi.org/10.1002/saj2.2....
 
49.
Yang, J., Shen, F., Wang, T., Wu, L., Li, Z., Li, N., Zhang, J., 2022. Pef-modflow: A framework for preliminary soil profile horizon delineation based on soil color captured by smartphone images. Environmental Modelling and Software 155, 105423. https://doi.org/10.1016/j.envs....
 
50.
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews 157, 1–17. http://dx.doi.org/10.1016/j.ea....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top