PRACA ORYGINALNA
Rozwój gleb oraz zawartość wybranych pierwiastków śladowych w glebach technogenicznych na hałdach historycznego górnictwa rud żelaza w Dolinie Jaworzynki w Tatrach
Więcej
Ukryj
1
Instytut Rolnictwa SGGW, Katedra Gleboznawstwa, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Polska
Data nadesłania: 13-03-2025
Data ostatniej rewizji: 19-05-2025
Data akceptacji: 23-05-2025
Data publikacji online: 23-05-2025
Data publikacji: 23-05-2025
Autor do korespondencji
Karolina Feluch
Instytut Rolnictwa SGGW, Katedra Gleboznawstwa, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Polska
Soil Sci. Ann., 2025, 76(2)205499
SŁOWA KLUCZOWE
STRESZCZENIE
Od średniowiecza do końca XIX wieku Tatry były ważnym ośrodkiem wydobycia i przetwórstwa rud metali. Technosole rozwijające się na obszarach historycznego górnictwa w Tatrach pozostają wciąż słabo poznane. Celem pracy było określenie właściwości fizykochemicznych oraz składu mineralnego badanych gleb, w celu ich klasyfikacji i identyfikacji procesów glebotwórczych zachodzących w glebach technogenicznych (industriosolach) na hałdach historycznego górnictwa rud żelaza w Dolinie Jaworzynki w Tatrach. Ponadto, celem badań było określenie całkowitej zawartości Fe, Mn i potencjalnie toksycznych pierwiastków śladowych (Zn, Pb, Cu, Cd, Ni, Co, Cr, As) w tych glebach co pozwoliło na ocenę stopnia zanieczyszczenia tymi pierwiastkami. Badano cztery profile glebowe reprezentujące zbiorowiska roślinności łąkowej (trzy profile) i las świerkowy (jeden profil). Podstawowym substratem budującym badane gleby były odpady kopalniane stanowiące utwory kamieniste bogate w węglany. W górnych częściach profili występowały cienkie (do kilku centymetrów) poziomy O i A (lub AC). Części ziemiste gleb charakteryzowały się uziarnieniem gliniastym. Najwyższą zawartość węgla organicznego (TOC) i całkowitego azotu (TN) odnotowano w poziomach O oraz w poziomach A i AC, co było związane z akumulacją materii organicznej w wierzchnich poziomach. Gleby wykazały wysokie pH (średnio 7,3) w dolnych częściach profili glebowych. Wierzchnia warstwa gleby miała niższe pH (średnio 6,6). Najniższe pH występowało w wierzchniej warstwie profilu rozwiniętego w lesie świerkowym (pH=4,5). Badane Technosole zawierały węglany (do 57,6%), natomiast profil znajdujący się w lesie świerkowym nie zawierał węglanów w wierzchniej warstwie gleby, co najprawdopodobniej było związane z wypłukiwaniem węglanów wywołane silnym zakwaszeniem. Skład mineralny Technosoli był zróżnicowany, a dominującymi minerałami był kwarc, dolomit i kalcyt. Podatność magnetyczna (χ) wahała się od 2,5 do 49,4 ×10-8·m3·kg-1, natomiast podatność magnetyczna zależna od częstotliwości (χfd) wynosiła od 1,6 do 8,6%. Zarówno χ, jak i χfd były najwyższe w wierzchniej warstwie gleby, co związane jest prawdopodobnie z przekształceniami minerałów zawierających Fe, które doprowadziły do zwiększenia wartości podatności magnetycznej wierzchniej warstwy gleby wraz z postępem procesów glebotwórczych w badanych glebach. Całkowita zawartość potencjalnie toksycznych pierwiastków śladowych (As, Cd, Co, Cr, Cu, Ni, Pb, Zn) w badanych glebach była zróżnicowana. Jednak zawartości tych pierwiastków były niskie i nie wskazywały na zanieczyszczenie gleby w świetle obowiązujących przepisów prawa w Polsce. Badania wykazały, że stopień zaawansowania procesów glebotwórczych w badanych glebach technogenicznych był najwyższy w wierzchniej warstwie gleby. Pierwszymi przejawami procesów glebotwórczych w badanych glebach technogenicznych są: (1) akumulacja glebowej materii organicznej w powierzchniowych warstwach gleby, (2) zakwaszenie wierzchniej warstwy gleby, co związane jest z przemianami i rozkładem glebowej materii organicznej, (3) wypłukiwanie węglanów z górnej części profilu glebowego oraz (4) wzrost podatności magnetycznej powierzchniowych poziomów glebowych.
REFERENCJE (72)
1.
Alriksson, A., Olsson, M.T., 1995. Soil changes in different age classes of Norway spruce (Picea abies (L.) Karst.) on afforested farmland. Plant and Soil 168, 103–110.
https://doi.org/10.1007/BF0002....
2.
Badin, A.L., Méderel, G., Béchet, B., Borschneck, D., Delolme, C., 2009. Study of the aggregation of the surface layer of Technosols from stormwater infiltration basins using grain size analyses with laser diffractometry. Geoderma 153(1–2), 163–171.
https://doi.org/10.1016/j.geod....
3.
Bini, C., Gaballo, S., 2006. Pedogenic trends in anthrosols developed in sulfidic mine spoils: A case study in the Temperino mine archaeological area (Campiglia Marittima, Tuscany, Italy). Quaternary International 156–157, 70–78,
https://doi.org/10.1016/j.quai....
4.
Ciarkowska, K., Miechówka, A., 2022. Identification of the factors determining the concentration and spatial distribution of Zn, Pb and Cd in the soils of the non-forest Tatra Mountains (southern Poland). Environmental Geochemistry and Health 44, 4323–4341.
https://doi.org/10.1007/s10653....
5.
Ciurzycki, W., 2003. Gospodarka pasterska a lasy Tatr Polskich. Sylwan 147(11), 80–85. (in Polish).
6.
Daniell, A., van Deventer, P.W., 2018. An overview of pedogenesis in Technosols in South Africa. South African Journal of Plant and Soil 35(4), 281–291.
https://doi.org/10.1080/025718....
7.
Dearing, J., Hey, K., Baban, S., Huddleston, A., Wellington, E., Loveland, P., 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International 127(3), 728–734.
https://doi.org/10.1111/j.1365....
8.
Drewnik, M., 2008. Geomorfologiczne uwarunkowania rozwoju pokrywy glebowej w obszarach górskich na przykładzie Tatr. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, Poland. (in Polish).
9.
Dziadowiec, H., 1990. Rozkład ściółek w wybranych ekosystemach leśnych: (mineralizacja, uwalnianie składników pokarmowych, humifikacja). Uniwersytet Mikołaja Kopernika, Toruń. (in Polish).
10.
Frouz, J., Prach, K., Pizl, V., Hanel, L., Stary, J., Tajovsky, K., Materna, J., Balik, V., Kalcik, J., Rehounkova, K., 2008. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology 44(1), 109–121.
https://doi.org/10.1016/j.ejso....
11.
Gonet, S., Smal, H., Chojnicki, J., 2015. Właściwości chemiczne gleb. [In:] Mocek, A. (Ed.), Gleboznawstwo. PWN, 201–208. (in Polish).
12.
Grünewald, G., Kaiser, K., Jahn, R., 2007. Alteration of secondary minerals along a time series in young alkaline soils derived from carbonatic wastes of soda production. Catena 71(3), 487–496.
https://doi.org/10.1016/j.cate....
13.
Hess, M., 1996. Klimat. Przyroda Tatrzańskiego Parku Narodowego. Tatry i Podtatrze 3, 53–68.
14.
Hrouda, F., 2011. Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophysical Journal International 187(3), 1256–1269.
https://doi.org/10.1111/j.1365....
15.
Huot, H., Simonnot, M.O., Marion, P., Yvon, J., De Donato, P., Morel, J.L., 2013. Characteristics and potential pedogenetic processes of a Technosol developing on iron industry deposits. Journal of Soils and Sediments 13(3), 555–568.
https://doi.org/10.1007/s11368....
16.
Huot, H., Simonnot, M.O., Morel, J.L., 2015. Pedogenetic trends in soils formed in technogenic parent materials. Soil Science 180(4–5), 182–192.
https://doi.org/10.1097/SS.000....
17.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, fourth ed. International Union of Soil Sciences (IUSS), Vienna, Austria.
18.
Jost, H., 1962. O górnictwie i hutnictwie w Tatrach Polskich. Wydawnictwo Naukowo-Techniczne, Warszawa, Poland. (in Polish).
19.
Jost, H., 2004. Dzieje górnictwa i hutnictwa w Tatrach Polskich. Towarzystwo Muzeum Tatrzańskiego. (in Polish).
20.
Józefowska, A., Pietrzykowski, M., Woś, B., Cajthaml, T., Frouz, J., 2017. The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 292, 9–16.
https://doi.org/10.1016/j.geod....
22.
Karczewska, A., Bogda, A., 2006. Heavy metals in soils of former mining areas in the Sudety Mountains – their forms and solubility. Polish Journal of Environmental Studies 15(2a), 104–110.
23.
Karczewska, A., Kabała, C., 2017. Analiza ryzyka środowiskowego jako nowa podstawa oceny stanu zanieczyszczenia gleb w polskim prawie. Soil Science Annual 68(2), 67–80.
https://doi.org/10.1515/ssa-20.... (in Polish).
24.
Karczewska, A., Lewińska, K., Siepak, M., Gałka, B., Dradrach, A., Szopka, K., 2018. Transformation of beech forest litter as a factor that triggers arsenic solubility in soils developed on historical mine dumps. Journal of Soils and Sediments 18(8), 2749–2758.
https://doi.org/10.1007/s11368....
25.
Komornicki, T., Skiba, S., 1996. Gleby [In:] Mirek Z. (Ed.). Przyroda Tatrzańskiego Parku Narodowego, Wydawnictwo Tatrzańskiego Parku Narodowego, Zakopane, 215–228. (in Polish).
26.
Korzeniowska, J., Krąż, P., 2020. Heavy metals content in the soils of the Tatra National Park near Lake Morskie Oko and Kasprowy Wierch – a case study (Tatra Mts, Central Europe). Minerals 10(12), 1120.
https://doi.org/10.3390/min101....
27.
Kwapuliński, J., Paukszto, A., Paprotny, Ł., Musielińska, R., Kowol, J., Nogaj, E., Rochel, R., 2012. Bioavailability of lead, cadmium, and nickel in Tatra Mountain National Park soil. Polish Journal of Environmental Studies 21(2), 407–413.
28.
Lal, R., Stewart, B.A. (Eds.), 2017. Urban soils. CRC Press, New York.
29.
Leguédois, S., Séré, G., Auclerc, A., Cortet, J., Huot, H., Ouvrard, S., Watteau, F., Schwartz, C., Morel, J.L., 2016. Modelling pedogenesis of Technosols. Geoderma 262, 199–212.
https://doi.org/10.1016/j.geod....
30.
Lottermoser, B., 2010. Mine Wastes: characterization, treatment and environmental impacts. Springer Science & Business Media. 279 p.
31.
Miechówka, A., 1989. Geochemical characteristics of Tatra rendzinas formed on dolomites. Cz. I. Ogólna charakterystyka gleb i niektóre dane mineralogiczne. Roczniki Gleboznawcze – Soil Science Annual 40, 83–105. (in Polish with English abstract).
32.
Miechówka, A., Ciarkowska, K., 1998. Mikromorfologiczne formy próchnicy tatrzańskich rędzin próchnicznych i butwinowych. Zeszyty Problemowe Postępów Nauk Rolniczych 464, 161–168. (in Polish with English abstract).
33.
Miechówka, A., Drewnik, M., 2018. Rendzina soils in the Tatra Mountains, central Europe: a review. Soil Science Annual 69(2), 88–100.
https://doi.org/10.2478/ssa-20....
34.
Mirek, Z., Piękoś-Mirkowa, H., 1992. Flora and vegetation of the Polish Tatra Mountains, Mountains Research and Development. International Mountain Society, 147–173.
https://doi.org/10.2307/367378....
35.
Molenda, D., 1989. Eksploatacja rud miedzi i handel miedzią w Polsce w późnym średniowieczu i w początkach nowożytności (do 1795 r.). Przegląd Historyczny 80(4), 803–804. (in Polish).
36.
Monserie, M.F., Watteau, F., Villemin, G., Ouvrard, S., Morel, J.L., 2009. Technosol genesis: identification of organo-mineral associations in a young Technosol derived from coking plant waste materials. Journal of Soils and Sediments 9, 537–546.
https://doi.org/10.1007/s11368....
37.
Moździerz, Z., Skawiński, P., 2015. Polska – Tatrzański Park Narodowy. Wydawnictwo Olesiejuk. (in Polish).
38.
Néel, C., Bril, H., Courtin-Nomade, A., Dutreuil, J.P., 2003. Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma 111, 1–20.
https://doi.org/10.1016/S0016-....
39.
Oleksynowa, K., Skiba, S., 1977. Characteristic of some cryogenic soils in the Tatra Mts. Roczniki Gleboznawcze – Soil Science Annual 28, 293–312. (in Polish with English abstract).
40.
Oleksynowa, K., Skiba, S., Kania, W., 1977. Introductory investigations on the geochemistry of rendzinas in the Tatra Mts. Roczniki Gleboznawcze – Soil Science Annual 28, 263–275. (in Polish with English abstract).
41.
Ortega, J.D., Sedov, S., Romero, F., Martínez Jardines, L.G., Solleiro Rebolledo, E., 2022. Chronosequence of Technosols at the Peña Colorada mine in Colima, Mexico: a short-term remediation alternative. Journal of Soils and Sediments 22, 942–956.
https://doi.org/10.1007/s11368....
42.
Osika, R., 1987. Budowa geologiczna Polski, t. IV. Złoża surowców mineralnych, Wydawnictwo Geologiczne, Warszawa. (in Polish).
43.
Ostrowska, A., Gawliński, S., Szczubiałka, Z., 1991. Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Środowiska, Warszawa. (in Polish).
44.
Ouallali, A., Bouhsane, N., Bouhlassa, S., Spalevic, V., Kader, S., Michael, R., Sestras, P., 2024. Exploring soil pedogenesis through frequency-dependent magnetic susceptibility in varied lithological environments. Euro-Mediterranian Journal of Environmental Integration.
https://doi.org/10.1007/s41207....
45.
Pająk, M., Błońska, E., Szostak, M., Gąsiorek, M., Pietrzykowski, M., Urban, O., Derbis, P., 2018. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air and Soil Pollution 229, 392.
https://doi.org/10.1007/s11270....
46.
Pansu, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, Berlin, Heidelberg.
47.
Paprotny, Ł., Kwapuliński, J., Wianowska, D., Gnatowski, M., Kasprzyk-Pochopień, J., Piekoszewski, W., 2024. A comparison of Co-Occurrence of special forms of selected metals in soil, on the example of sycamore, beech, and spruce forest complexes in urbanized and non-urbanized regions of Tatra National Park. Polish Journal of Environmental Studies 33(4), 4273–4282.
https://doi.org/10.15244/pjoes....
48.
Piękoś-Mirkowa, H., Mirek, Z. 1996. Zbiorowiska roślinne. [In:]: Mirek, Z. (Ed.). Przyroda Tatrzańskiego Parku Narodowego. Wydawnictwo Tatrzańskiego Parku Narodowego, Tatry i Podtatrze, 3. (in Polish).
49.
Piotrowska, K., Kotański, Z., Gawęda, A., Piotrowski, J., Rączkowski, W., 2014. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50000, arkusz Tatry Zachodnie (1060). Ministerstwo Środowiska, Warszawa. (in Polish).
50.
Piotrowska, K., Michalik, M., Rączkowski, W., Iwanow, A., Wójcik, A., Derkacz, M., Wasiluk, R., 2015. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50000, arkusz Tatry Wysokie (1061). Ministerstwo Środowiska, Warszawa. (in Polish).
51.
Rate, A. W., 2022. The Future of Urban Soils. [In:] Rate, A.W. (Eds.) Urban Soils: Principles and Practice. Springer Cham, 399–427.
53.
Regulation of the Minister of Climate and Environment, 2024. Regulation of the Minister of Climate and Environment of 31 October 2024 amending the regulation on the method of conducting the assessment of ground surface pollution, No. 2024, Item 1657.
https://isap.sejm.gov.pl/isap.....
54.
Séré, G., Schwartz, C., Ouvrard, S., Renat, J.-C., Watteau, F., Villemin, G., Morel, J.L., 2010. Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments 10, 1246–1254.
https://doi.org/10.1007/s11368....
55.
Skiba, S., 1985. Rola klimatu i roślinności w genezie gleb na przykładzie gleb górskich z Tatr Polskich i z gór Mongolii. Zeszyty Naukowe Akademii Rolniczej w Krakowie, Seria Rozprawy Habilitacyjne 99, 1–72. (in Polish with English abstract).
56.
Skiba, S., 1996, Pokrywa glebowa Tatr (Stan i główne kierunki badań gleboznawczych), [In:] A. Kotarba (Ed.) Przyroda Tatrzańskiego Parku Narodowego a Człowiek, t. 1. Nauki o Ziemi, TPN – Polskie Towarzystwo Przyjaciół Nauk o Ziemi, Kraków−Zakopane.
57.
Skrzydłowski, T., 2019. Przewodnik przyrodniczy po Tatrach Polskich. Wydawnictwo Tatrzańskiego Parku Narodowego, 432 p. (in Polish).
58.
Soil Science Division Staff, 2017. Soil Survey Manual. Ditzler, C., Scheffe, K., Monger H.C. (Eds.) USDA Handbook 18. Washington, D.C.
59.
Tarnawczyk, M., Uzarowicz, Ł., Kwasowski, W., Górka-Kostrubiec, B., Pędziwiatr, A., 2024. Soil-forming factors controlling Technosol formation in historical mining and metallurgical sites in the high-alpine environment of the Tatra Mountains, southern Poland. Catena 247, 108521.
https://doi.org/10.1016/j.cate....
61.
Uzarowicz, Ł., Skiba, S., 2011. Technogenic soils developed on mine spoils containing iron sulphides: Mineral transformations as an indicator of pedogenesis. Geoderma 163, 95–108.
https://doi.org/10.1016/j.geod....
62.
Uzarowicz, Ł., Zagórski, Z., Mendak, W., Bartmiński, P., Szara, E., Kondras, M., Oktaba, L., Turek, A., Rogoziński, R., 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. Catena 157, 75–89.
https://doi.org/10.1016/j.cate....
63.
Uzarowicz, Ł., Charzyński, P., Greinert, A., Hulisz, P., Kabała, C., Kusza, G., Kwasowski, W., Pędziwiatr, A., 2020a. Studies of technogenic soils in Poland: past, present, and future perspectives. Soil Science Annual 71, 281–299.
https://doi.org/10.37501/soils....
64.
Uzarowicz, Ł., Wolińska, A., Błońska, E., Szafranek-Nakonieczna, A., Kuźniar, A., Słodczyk, Z., Kwasowski, W., 2020b. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: microbiological activity as an indicator of soil development following land reclamation. Applied Soil Ecology 156C, 103699.
https://doi.org/10.1016/j.apso....
65.
Uzarowicz, Ł., Swęd, M., Kwasowski, W., Pędziwiatr, A., Kaczmarek, D., Koprowska, D., Górka-Kostrubiec, B., Pawłowicz, E., Murach, D., 2024. Initial pedogenic processes, mineral and chemical transformations and mobility of trace elements in Technosols on dumps of the former copper mines in Miedziana Góra and Miedzianka, the Świętokrzyskie Mts., south-central Poland. Catena 245, 108293.
https://doi.org/10.1016/j.cate....
66.
Uzarowicz, Ł., Kwasowski, W., Lasota, J., Błońska, E., Górka-Kostrubiec, B., Tarnawczyk, M., Murach, D., Gilewska, M., Gryczan, W., Pawłowicz, E., Jankowski, P., 2025. Vegetation cover as an important factor affecting the properties and evolution of Spolic Technosols: A case study from a dump of the abandoned iron ore mine in central Poland. Catena 254, 108906.
https://doi.org/10.1016/j.cate....
68.
Warzyński, H., Sosnowska, A., Harasimiuk, A., 2018. Effect of variable content of organic matter and carbonates on results of determination of granulometric composition by means of Casagrande’s aerometric method in modification by Prószyński. Soil Science Annual 69(1), 39–48.
https://doi.org/10.2478/ssa-20....
69.
Wasak, K., 2014. Cellulose decomposition rate and features of organic matter in forest soils in the Tatra Mountains. Gruntoznavstvo 15(1–2), 70–80.
https://doi.org/10.15421/04140....
70.
Wasak, K., Drewnik, M., 2012. Properties of humus horizons of soils developed in the lower montane belt in the Tatra Mountains. Polish Journal of Soil Science 45(1), 57–68.
71.
Wasak, K., Drewnik, M., 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland - a case study from the Tatra Mountains (Poland). Solid Earth 6, 1103–1115.
https://doi.org/10.5194/se-6-1....
72.
Zamanian, K., Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews 157, 1–17.
https://doi.org/10.1016/j.ears....