PRACA ORYGINALNA
Ocena wskaźnika stożkowości gleby w gruntach rolnych na zboczu góry Lawu, Indonezja
Więcej
Ukryj
1
Soil Science Department, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36, Surakarta 57126, Central Java, Indonesia
2
Agrotechnology Department, Faculty of Agro Industry, Mercu Buana University, Jl. Raya Wates-Yogyakarta, Bantul, 55752, Special Region of Yogyakarta, Indonesia
3
Agrotechnology Department, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36, Surakarta 57126, Central Java, Indonesia
4
Agronomy Department, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36, Surakarta 57126, Central Java, Indonesia
5
Environmental Science Department, Thai Nguyen University of Agriculture and Forestry, Quyết Thắng, Thành phố Thái Nguyên 24119, Thai Nguyen Province, Vietnam
Data nadesłania: 29-04-2025
Data ostatniej rewizji: 25-07-2025
Data akceptacji: 26-08-2025
Data publikacji online: 26-08-2025
Data publikacji: 26-08-2025
Autor do korespondencji
Mujiyo Mujiyo
Department of Soil Science, Faculty of Agriculture,, Universitas Sebelas Maret, Jl. Ir. Sutami No 36A, 57126, Surakarta, Indonesia
Soil Sci. Ann., 2025, 76(4)
SŁOWA KLUCZOWE
STRESZCZENIE
Zagęszczenie gleby stało się problemem, który poważnie zagraża gruntom rolnym i produkcji żywności. Celem tych badań było określenie rozkładu wskaźnika stożka glebowego, ocena wpływu zmienności źródeł na wskaźnik stożka glebowego, określenie kluczowych cech gleby, które wpływają na wskaźnik stożka glebowego i przedstawienie zaleceń dotyczących zarządzania gruntami. Badanie przeprowadzono w poddystrykcie Slogohimo, w regencji Wonogiri w Indonezji, położonym na wysokości 1541 stóp na górze Lawu, przy użyciu opisowej metody eksploracyjnej i analizy laboratoryjnej. Badania i pobieranie próbek gleby odbywało się przy użyciu wiertarki gruntowej i dynamicznego penetrometru stożkowego (DCP) na głębokościach od 0 do 30 cm, z odstępem 10 cm. Wyniki wskaźnika stożka (CI) wskazują, że stan zagęszczenia gleby jest wysoki do ekstremalnie wysokiego w oparciu o skategoryzowany zakres od 2,58 MPa do 11,25 MPa. Klasa wysokiego CI obejmuje największy obszar 2116,83 ha (39,50%), następnie klasa bardzo wysoka z 1324,54 ha (24,71%) i klasa ekstremalnie wysoka z 1918,13 ha (35,79%). Rodzaje gleby znacząco wpływają na indeks stożka glebowego (CI). Czynnikami determinującymi są gęstość objętościowa, tekstura, zawartość wilgoci i węgiel organiczny. Gęstość objętościowa i tekstura gleby są dodatnio skorelowane z CI, podczas gdy węgiel organiczny i zawartość wilgoci są ujemnie skorelowane z CI. Jako czynnik determinujący, zalecaną strategią jest dodanie materii organicznej i właściwe zarządzanie gruntami w celu zoptymalizowania CI do umiarkowanego poziomu, wspierając produktywność gruntów.
REFERENCJE (36)
1.
Alhai, D.P., Syakur, S., Basri, H., 2021. Soil penetration resistance in horticultural land use in Saree, Aceh besar regency. Agricultural Student Scientific Journal 6(4), 680–690.
https://doi.org/10.17969/jimfp....
2.
Ampadu, S.I., Fiadjoe, Y.G.J., 2015. The influence of water content on the dynamic cone penetration index of a lateritic soil stabilized with various percentages of a quarry by–product. Transportation Geotechnics 5, 68–85.
https://doi.org/10.1016/j.trge....
3.
Arvin, M.R., Askari, F., Farzaneh, O., 2012. Seismic behavior of slopes by lower bound dynamic shakedown theory. Computers and Geotechnics 39, 107–115.
4.
Baio, F.H.R., Scarpin, I.M., Roque, C.G., Neves, D.C., 2017. Soil resistance to penetration in cotton rows and interrows. Revista Brasileira de Engenharia Agricolae.
5.
Balittanah, 2009. Chemical analysis of soil, plant, water, and fertilizer, 2nd ed. Balai Penelitian Tanah, Bogor, Indonesia.
6.
Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M., 2018. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 160, 376–384.
https://doi.org/10.1016/j.cate....
7.
Carlesso, L., Beadle, A., Cook, S.M., Evans, J., Hartwell, G., Ritz, K., Sparkes, D., Wu, L., Murray, P. J., 2019. Soil compaction effects on litter decomposition in an arable field: Implications for management of crop residues and headlands. Applied Soil Ecology 134, 31–37.
https://doi.org/10.1016/j.apso....
8.
Colombi, T., Keller, T., 2019. Developing strategies to recover crop productivity after soil compaction—a plant eco-physiological perspective. Soil and Tillage Research 191, 156–161.
https://doi.org/10.1016/j.stil....
9.
Colombi, T., Torres, L.C., Walter, A., Keller, T., 2018. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth– a vicious circle. Science of Total Environment 626, 1026–1035.
https://doi.org/10. 1016/j.scitotenv.2018.01.129.
10.
Dewi, E., Haryanto, R., Sudirja, R., 2020. The effect on land use and slope of the organic carbon and some physical soil inceptisols in Jatinangor, West Java. AGROSAINSTEK: Jurnal Ilmu dan Teknologi Pertanian 4(1), 49–53.
https://doi.org/10.33019/agros....
11.
Elvina, W., Utami, R.T., 2024. The effect of slope chamfer on Hydroponic NFT (Nutrient Film Technique) system for cultivitation of Japan Spinach (Spinacia oleracea L.). Jurnal Agroqua: Media Informasi Agronomi dan Budidaya Perairan 22(2), 141–150.
12.
Hanudin, E., Barus, P.A., Nurudin, M., Utami, S.N.H. 2025. Potassium Fractionation and Stock in Clay Soils: Influence of Geochemical and Mineralogical Properties in Yogyakarta Region, Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 40(2), 156–172.
13.
Huang, J., Wu, P., Zhao, X., 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena 104, 93–102.
https://doi.org/10.1016/j.cate....
14.
Istiqomah, N.M., Cahyono, O., Mujiyo, M., Ariyanto, D.P., Maro’ah, S., Romadhon, M.R., Irmawati, V., 2023. Assessment of potential soil degradation on various land uses in Keduang Watershed. IOP Conference Series: Earth and Environmental Science 1241(1).
https://doi.org/10.1088/1755-1....
15.
Khetsha, Z., Van Der Watt, E., Masowa, M., Legodi, L., Satshi, S., Sadiki, L., Moyo, K., 2024. Phytohormone-based biostimulants as an alternative mitigating strategy for horticultural plants grown under adverse multi-stress conditions: common South African stress factors. Caraka Tani: Journal of Sustainable Agriculture 39(1), 167–193.
http://dx.doi.org/10.20961/car....
16.
Kumar, A., Chen, Y., Sadek, A., Rahman, S., 2012. Soil cone index in relation to soil texture, moisture content, and bulk density for no-tillage and conventional tillage. Agricultural Engineering International: CIGR Journal. 14(1), 26–37.
https://cigrjournal.org/index.....
17.
Kurniawan, I.D., Kinasih, I., Akbar, R.T.M., Chaidir, L., Iqbal, S., Pamungkas, B., Imanudin, Z., 2023. Arthropod community structure indicating soil quality recovery in the organic agroecosystem of Mount Ciremai National Park’s Buffer Zone. Caraka Tani: Journal of Sustainable Agriculture 38(2), 229–243.
https://doi.org/10.20961/carak....
18.
Lee, J.S., Sang, Y.K., Won-Taek, H., Yong-Hoo, B., 2019. Assessing subgrade strength using an instrumented dynamic cone penetrometer. Soils and Foundations 59(4), 930–941.
https://doi.org/10.1016/j.sand....
19.
Liu, Z., Cao, S., Sun, Z., Wang, H., Qu, S., Lei, N., He, J., Dong, Q., 2021. Tillage effects on soil properties and crop yield after land reclamation. Scientific Reports 11(1), 4611.
https://doi.org/10.1038/s41598....
20.
Meshalkina, J.L., Stein, A., Dmitriev, Y.A., 1995. Spatial variability of penetration data on Russian plots in different land use. Soil Technology 8(1), 43–59.
https://doi.org/10.1016/0933-3....
21.
Mirzavand, J., Moradi-Talebbeigi, R., 2021. Relationships between field management, soil compaction, and crop productivity. Archives of Agronomy and Soil Science 67(5), 675–686.
https://doi.org/10.1080/036503....
22.
Molina, W.F., Piedade, S.M.S., Amaral, J.R., 2013. Penetration resistance in a latosol under different moisture and penetration speeds. Soil Science and Plant Nutrition Revista Ceres 60(5), 715–721.
https://doi.org/10.1590/S0034-....
23.
Oco, R.G., Devanadera, M.K., De Grano, R.V.R., 2024. Utilization of Nostoc piscinale as potential biofertilizer to the growth and development of Oryza sativa L. Caraka Tani: Journal of Sustainable Agriculture 39(1), 22–37.
http://dx.doi.org/10.20961/car....
24.
Olivares, B., Araya-Alman, M., Acevedo-Opazo, C., Rey, J.C., Cañete-Salinas, P., Kurina, F.G., Balzaarini, M., Lobo, D., Navas-Cortés, J.A., Landa, B.B., Gómez, J.A., 2020. Relationship between soil properties and Banana productivity in the two main cultivation areas in Venezuela. Journal of Soil Science and Plant Nutrition 20, 2512–2524.
https://doi.org/10.1007/s42729....
25.
Pang, M.M., Pun, M.Y., Ishak, Z.A.M., 2013. Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/polypropylene blends. Journal of Applied Polymer Science 129(6), 3656–3664.
26.
Priyonggo, B. 2019. Design and performance test of digital penetrometer with android based record system. Jurnal Keteknikan Pertanian 7(1), 83–90.
https://doi.org/10.19028/jtep.....
27.
Priyonggo, B., Mufidah, Z., 2021. Cone Index testing on dry soil using a digital penetrometer. Journal of Tropical Agricultural Engineering and Biosystems 9(2), 134–140.
http://orcid.org/0000-0003-456....
28.
Pulido-Moncada, M.P., Gabriels, D., Lobo, D., Rey, J.C., Cornelis, W.M., 2014. Visual field assessment of soil structural quality in tropical soils. Soil and Tillage Research 139, 8–18.
https://doi.org/10.1016/j.stil....
29.
Putra, A.N., Ustiatik, R., Prasetya, N.R., Adara, E.A., Nita, I., Hadi, S.R.I., Rayes, M.L. 2025. New Emerging and Comprehensive Land Mapping Unit at Detailed Scale: Integrating Random Forest Analysis and Remote Sensing Techniques for Sustainable Land Management. Caraka Tani: Journal of Sustainable Agriculture, 40(3), 307–325.
30.
Romadhon, M.R., Mujiyo, M., Cahyono, O., Dewi, W.S., Hardian, T., Anggita, A., Hasanah, K., Irmawati, V., Istiqomah, N.M., 2024. Assessing the effect of rice management system on soil and rice quality index in Girimarto, Wonogiri, Indonesia. Journal of Ecological Engineering 25(2), 126–139.
https://doi.org/10.12911/22998....
31.
Romadhon, M.R., Mujiyo, M., Cahyono, O., Maro’ah, S., Istiqomah, N.M., Irmawati, V. 2023. Potential soil degradation of paddy fields through observation approaches from various sources of environmental diversity. IOP Conference Series: Earth and Environmental Science 1241(1).
https://doi.org/10.1088/1755-1....
32.
Shah, A.N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M.A., Tung, S. A., Hafeez, A., Souliyanonh, B., 2017. Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research 24, 10056–10067.
https://doi.org/10.1007/s11356....
33.
Sumarniasih, M.S., Antara, M., 2021. Sustainable dryland management strategy in Buleleng Regency of Bali, Indonesia. Journal of Dryland Agriculture 7(5), 88–95.
https://doi.org/10.5897/joda20....
34.
Vaz, C.M., Manieri, J.M., De Maria, I.C., Tuller, M., 2011. Modelling and correction of soil penetration resistance for varying soil water content. Geoderma 166(1), 92–101.
35.
Yatno, E., Hikmatullah, H., Syakir, M., 2016. Properties and management implications of soils developed from volcanic ash in North Sulawesi. Jurnal Tanah dan Iklim 40(1), 1–10.
36.
Zhang, W., Li, S., Shen, Y., Yue, S., 2021. Film mulching affects root growth and function in dryland maize-soybean intercropping. Field Crops Research 271, 108240.